使用RAGAS评估本地RAG系统时的上下文选择策略
2025-05-26 12:10:15作者:霍妲思
在构建和评估基于检索增强生成(RAG)的系统时,一个关键问题是如何正确选择评估过程中使用的上下文数据。本文将深入探讨这一技术细节,帮助开发者理解在本地RAG系统中进行有效评估的最佳实践。
评估数据集的组成要素
一个完整的RAG评估数据集通常包含三个核心组成部分:
- 问题集:需要RAG系统回答的查询问题
- 上下文:系统检索到的相关文档片段
- 参考答案:问题的标准答案或真实回答
测试集生成与评估的差异
在测试集生成阶段,开发者通常会使用OpenAI等云端模型的嵌入方法来创建问题/上下文/参考答案的三元组。然而,当实际部署本地RAG系统时,系统使用的是完全不同的嵌入方法(如GenAI嵌入),这将导致检索到的上下文与测试集生成阶段获取的上下文存在差异。
评估时的上下文选择原则
技术实践表明,在评估本地RAG系统时,应当使用系统自身检索到的上下文而非测试集生成阶段的上下文。这种选择基于以下技术考量:
- 评估真实性:使用系统实际检索的上下文能够真实反映系统在生产环境中的表现
- 端到端测试:这种评估方式涵盖了从检索到生成的全流程性能
- 指标相关性:RAGAS提供的评估指标(如上下文精确度和召回率)正是设计用于衡量系统自身的检索能力
评估数据集的构建方法
正确的评估数据集构建方法应该是:
- 问题集和参考答案:从标准测试集或"创建测试集"文档中获取
- 答案和上下文:由本地RAG系统在实际运行中生成
这种分离式构建方法确保了评估既保持了问题与参考答案的客观性,又能准确反映本地系统的实际性能。
评估指标的技术含义
RAGAS提供的评估指标针对RAG系统的不同组件设计:
- 检索器指标:包括上下文精确度和上下文召回率,专门评估检索系统的性能
- 生成器指标:如忠实度(衡量幻觉)和答案相关性,评估LLM生成质量
通过这种分层次的评估,开发者可以精确诊断系统瓶颈所在,无论是检索环节还是生成环节的问题。
技术实践建议
对于正在实施本地RAG系统的开发者,建议:
- 保持测试问题的稳定性,使用公认的基准数据集
- 允许系统使用自身的检索机制获取上下文
- 定期更新评估数据集以反映实际应用场景的变化
- 对比不同嵌入方法在相同问题集上的表现差异
这种评估方法不仅适用于本地RAG系统,也可推广到其他自定义检索增强系统的性能评估中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1