Grobid项目在Apptainer容器中的部署实践
背景介绍
Grobid是一个用于从学术文档中提取结构化信息的机器学习工具,广泛应用于文献管理和知识挖掘领域。在实际生产环境中,很多高性能计算(HPC)平台使用Apptainer(原Singularity)作为容器解决方案。本文将详细介绍如何在Apptainer环境中正确部署和运行Grobid服务。
常见问题分析
许多用户在尝试通过Apptainer运行Grobid官方Docker镜像时遇到路径错误问题,主要报错信息为"stat ~/grobid-service/bin/grobid-service: no such file or directory"。这是由于容器内部路径与Apptainer默认查找路径不一致导致的。
解决方案
方法一:直接修改容器运行路径
通过分析Grobid容器内部结构,可以发现实际服务路径位于/opt/grobid/grobid-service/bin/grobid-service。因此最简单的解决方法是直接指定完整路径运行:
apptainer run --nv --no-home --cleanenv grobid_0.8.0.sif /opt/grobid/grobid-service/bin/grobid-service
方法二:使用Apptainer定义文件构建
更规范的解决方案是创建一个Apptainer定义文件,明确指定运行路径:
# grobid.def文件内容
BootStrap: docker
From: grobid/grobid:0.8.0
%runscript
cd /opt/grobid && bash grobid-service/bin/grobid-service
构建命令:
apptainer build grobid.sif grobid.def
运行命令:
apptainer run grobid.sif
方法三:使用可写沙盒模式
对于需要自定义配置的场景,可以使用Apptainer的沙盒模式:
- 创建可写沙盒:
apptainer build --sandbox grobid_0.8.0/ docker://grobid/grobid:0.8.0
- 进入沙盒进行配置:
apptainer shell --writable --no-home --cleanenv grobid_0.8.0/
- 在沙盒内创建符号链接和修改配置:
ln -s /opt/grobid/grobid-* .
sed -i 's|install: "../delft"|install: "/opt/grobid"|g' /opt/grobid/grobid-home/config/grobid.yaml
- 构建最终镜像:
apptainer build grobid_0.8.0.sif grobid_0.8.0/
注意事项
-
对于Apptainer 1.2及以上版本,需要使用
--no-mount home,cwd参数替代旧的路径处理方式。 -
在HPC环境中运行时,可能需要添加
--nv参数来支持GPU加速。 -
如果遇到配置文件找不到的问题,检查grobid.yaml中的路径配置是否正确指向容器内的绝对路径。
最佳实践建议
-
优先使用定义文件方法,这种方式更易于维护和版本控制。
-
对于生产环境,建议将修改后的配置文件和模型数据挂载为外部卷,而不是直接修改容器镜像。
-
定期检查Grobid和Apptainer的版本兼容性,特别是当升级任一组件时。
通过以上方法,用户可以在各种支持Apptainer的HPC环境中顺利部署Grobid服务,充分利用其强大的文献信息提取能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00