vLLM项目在ROCm平台上的符号未定义问题分析与解决
问题背景
vLLM是一个高性能的LLM推理和服务引擎,近期有用户在AMD ROCm平台上构建vLLM时遇到了运行时错误。具体表现为在导入vllm._C模块时出现"undefined symbol"错误,指向一个名为_Z18cutlass_mla_decodeRKN2at6TensorES2_S2_S2_S2_S2_d的符号未定义。
错误现象
用户在基于ROCm的Docker环境中构建vLLM后,尝试导入vllm._C模块时遇到以下错误:
ImportError: /usr/local/lib/python3.12/dist-packages/vllm/_C.abi3.so: undefined symbol: _Z18cutlass_mla_decodeRKN2at6TensorES2_S2_S2_S2_S2_d
这个错误表明编译生成的共享库中引用了一个未定义的符号,该符号与CUTLASS(CUDA Templates for Linear Algebra Subroutines)相关,具体是一个名为cutlass_mla_decode的函数。
技术分析
-
符号解析:通过demangle工具可以解析出这个符号对应的函数原型大致为:
cutlass_mla_decode(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, double)这表明该函数接受6个PyTorch张量和一个双精度浮点数作为参数。
-
CUTLASS与ROCm:CUTLASS原本是为NVIDIA CUDA设计的模板库,在ROCm平台上使用时可能存在兼容性问题。这个特定的
mla_decode函数可能是vLLM中用于矩阵乘法和解码操作的优化实现。 -
构建过程:虽然Docker构建过程没有报错,但运行时出现符号未定义错误,这表明:
- 编译时链接了声明该符号的头文件
- 但运行时找不到对应的实现库
- 可能是构建系统没有正确识别ROCm平台的特殊性
解决方案
开发团队迅速响应并修复了这个问题,主要涉及:
-
构建系统调整:修正了ROCm平台下的构建配置,确保所有必要的符号都能正确链接。
-
平台特定代码:可能添加了ROCm平台下的替代实现,或者修正了符号导出方式。
-
依赖管理:确保构建过程正确识别和处理ROCm环境下的特殊依赖关系。
验证与确认
用户确认修复后问题解决,表明:
- 新的构建能够正确生成包含所有必要符号的共享库
- ROCm平台下的运行时环境能够正确加载和执行这些符号
- vLLM在AMD GPU上的功能恢复正常
经验总结
这个案例展示了跨平台深度学习框架开发中的常见挑战:
-
符号可见性:不同平台对符号的命名和可见性规则可能不同,需要特别注意。
-
构建系统复杂性:支持多平台时,构建系统需要能够处理各种特殊情况。
-
及时响应:开源社区的快速响应机制对于解决用户问题至关重要。
对于开发者而言,当遇到类似问题时,可以:
- 仔细检查构建日志和运行时环境
- 使用工具如
nm检查共享库中的符号 - 确认所有依赖项的平台兼容性
- 及时向社区报告问题以获取支持
vLLM团队通过这次问题的快速解决,进一步提升了框架在ROCm平台上的稳定性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00