KServe中配置私有Harbor仓库镜像拉取的解决方案
在使用KServe部署AI推理服务时,经常会遇到需要从私有Harbor仓库拉取容器镜像的场景。本文将详细介绍如何正确配置KServe以支持从私有Harbor仓库拉取镜像。
问题背景
当在KServe的InferenceService配置中指定了私有Harbor仓库的镜像地址时,Pod会因无法通过认证而出现"ErrImagePull"错误。错误信息通常显示为"pull access denied"或"no basic auth credentials",这表明Kubernetes集群没有获取镜像所需的认证凭据。
解决方案
1. 创建Docker注册表Secret
首先需要在部署InferenceService的命名空间中创建一个docker-registry类型的Secret:
apiVersion: v1
kind: Secret
metadata:
name: harbor-credential
namespace: default
data:
.dockerconfigjson: <base64编码的docker配置>
type: kubernetes.io/dockerconfigjson
其中.dockerconfigjson的值可以通过以下命令生成:
kubectl create secret docker-registry harbor-credential \
--docker-server=harbor.ext.hp.com \
--docker-username=<用户名> \
--docker-password=<密码> \
--docker-email=<邮箱> \
--dry-run=client -o yaml
2. 在InferenceService中引用Secret
在InferenceService的transformer或predictor配置中,通过imagePullSecrets字段引用创建的Secret:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-grpc-transformer
spec:
predictor:
model:
modelFormat:
name: pytorch
storageUri: gs://kfserving-examples/models/torchscript
runtime: kserve-tritonserver
transformer:
containers:
- image: harbor.ext.hp.com/onecloud-sol/infra-demo-itg:image-transformer-1.0
name: kserve-container
imagePullSecrets:
- name: harbor-credential
实现原理
-
认证机制:Kubernetes通过docker-registry类型的Secret存储私有仓库的认证信息,这些信息会被kubelet在拉取镜像时使用。
-
镜像拉取流程:
- kubelet读取Pod定义中的imagePullSecrets
- 从指定Secret获取.dockerconfigjson
- 使用其中的凭据向私有仓库发起认证请求
- 认证通过后拉取镜像
-
安全考虑:所有认证信息都以Secret形式存储,确保敏感信息不会以明文形式出现在配置文件中。
最佳实践
-
命名空间隔离:建议在每个命名空间都创建对应的Secret,而不是使用default命名空间的Secret。
-
权限最小化:为不同服务使用不同的仓库账号,限制每个账号只能访问必要的镜像仓库。
-
自动刷新:定期更新Secret,特别是在密码或token有变更时。
-
网络策略:确保Kubernetes节点能够访问私有Harbor仓库的网络端口。
常见问题排查
-
Secret未生效:检查Secret是否创建在与InferenceService相同的命名空间。
-
认证失败:确认用户名密码是否正确,是否有仓库访问权限。
-
网络问题:检查节点到Harbor仓库的网络连通性。
-
证书问题:如果是HTTPS仓库且使用自签名证书,需要在节点上配置信任该证书。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00