掌握Python机器学习六步法——开源项目最佳实践
2025-04-26 01:25:19作者:邓越浪Henry
1. 项目介绍
本项目是基于Apress出版社的《Mastering Machine Learning with Python in Six Steps》一书的开源实现。该项目旨在通过六个步骤,帮助初学者和中级开发者掌握使用Python进行机器学习的基本技能和最佳实践。
2. 项目快速启动
首先,确保您的系统已安装Python环境和必要的库。以下步骤将帮助您快速启动项目:
# 克隆项目
git clone https://github.com/Apress/mastering-ml-w-python-in-six-steps.git
# 进入项目目录
cd mastering-ml-w-python-in-six-steps
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python step_1_data_preparation.py
上述脚本step_1_data_preparation.py是第一步数据准备的示例,类似地,项目中有多个步骤对应的脚本,您可以逐一运行。
3. 应用案例和最佳实践
数据预处理
数据预处理是机器学习项目的第一步,它包括数据清洗、特征提取和特征缩放等。以下是一个简单的数据清洗示例:
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 清洗数据:删除缺失值
data = data.dropna()
# 特征提取:选择有用的特征
features = data[['feature1', 'feature2', 'feature3']]
模型训练
在模型训练阶段,选择合适的算法并调整超参数至关重要。以下是一个使用决策树分类器的示例:
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
# 划分数据集
X_train, X_test, y_train, y = train_test_split(features, labels, test_size=0.2, random_state=42)
# 创建模型
clf = DecisionTreeClassifier()
# 训练模型
clf.fit(X_train, y_train)
# 评估模型
accuracy = clf.score(X, y)
print(f'模型准确率: {accuracy}')
模型部署
模型训练完成后,部署到生产环境是下一步。以下是一个简单的Web API部署示例:
from flask import Flask, request
import joblib
# 加载模型
model = joblib.load('model.pkl')
# 创建Flask应用
app = Flask(__name__)
# 定义预测路由
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json(force=True)
prediction = model.predict([data['features']])
return {'prediction': prediction.tolist()}
# 启动应用
if __name__ == '__main__':
app.run(debug=True)
4. 典型生态项目
本项目涉及的机器学习生态项目包括但不限于:
scikit-learn:提供简单有效的数据挖掘和数据分析工具。pandas:强大的数据处理库,用于数据清洗和预处理。flask:一个轻量级的Web应用框架,用于部署机器学习模型。
通过本项目,您可以深入了解这些典型生态项目在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
169
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
374
3.2 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92