掌握Python机器学习六步法——开源项目最佳实践
2025-04-26 14:43:39作者:邓越浪Henry
1. 项目介绍
本项目是基于Apress出版社的《Mastering Machine Learning with Python in Six Steps》一书的开源实现。该项目旨在通过六个步骤,帮助初学者和中级开发者掌握使用Python进行机器学习的基本技能和最佳实践。
2. 项目快速启动
首先,确保您的系统已安装Python环境和必要的库。以下步骤将帮助您快速启动项目:
# 克隆项目
git clone https://github.com/Apress/mastering-ml-w-python-in-six-steps.git
# 进入项目目录
cd mastering-ml-w-python-in-six-steps
# 安装依赖
pip install -r requirements.txt
# 运行示例脚本
python step_1_data_preparation.py
上述脚本step_1_data_preparation.py
是第一步数据准备的示例,类似地,项目中有多个步骤对应的脚本,您可以逐一运行。
3. 应用案例和最佳实践
数据预处理
数据预处理是机器学习项目的第一步,它包括数据清洗、特征提取和特征缩放等。以下是一个简单的数据清洗示例:
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 清洗数据:删除缺失值
data = data.dropna()
# 特征提取:选择有用的特征
features = data[['feature1', 'feature2', 'feature3']]
模型训练
在模型训练阶段,选择合适的算法并调整超参数至关重要。以下是一个使用决策树分类器的示例:
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
# 划分数据集
X_train, X_test, y_train, y = train_test_split(features, labels, test_size=0.2, random_state=42)
# 创建模型
clf = DecisionTreeClassifier()
# 训练模型
clf.fit(X_train, y_train)
# 评估模型
accuracy = clf.score(X, y)
print(f'模型准确率: {accuracy}')
模型部署
模型训练完成后,部署到生产环境是下一步。以下是一个简单的Web API部署示例:
from flask import Flask, request
import joblib
# 加载模型
model = joblib.load('model.pkl')
# 创建Flask应用
app = Flask(__name__)
# 定义预测路由
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json(force=True)
prediction = model.predict([data['features']])
return {'prediction': prediction.tolist()}
# 启动应用
if __name__ == '__main__':
app.run(debug=True)
4. 典型生态项目
本项目涉及的机器学习生态项目包括但不限于:
scikit-learn
:提供简单有效的数据挖掘和数据分析工具。pandas
:强大的数据处理库,用于数据清洗和预处理。flask
:一个轻量级的Web应用框架,用于部署机器学习模型。
通过本项目,您可以深入了解这些典型生态项目在实际应用中的使用方法和最佳实践。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.23 K

暂无简介
Dart
521
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
66
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

React Native鸿蒙化仓库
JavaScript
210
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
195

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399