【亲测免费】 LTSF-Linear 项目安装和配置指南
2026-01-20 02:53:20作者:明树来
1. 项目基础介绍和主要编程语言
LTSF-Linear 是一个用于时间序列预测的开源项目,由 cure-lab 团队开发。该项目的主要目标是评估和比较线性模型与 Transformer 模型在时间序列预测任务中的有效性。LTSF-Linear 项目使用 Python 作为主要的编程语言,并且基于 PyTorch 框架进行开发。
2. 项目使用的关键技术和框架
LTSF-Linear 项目主要使用了以下关键技术和框架:
- Python:作为主要的编程语言,用于实现模型和实验脚本。
- PyTorch:用于构建和训练深度学习模型。
- Conda:用于管理项目的虚拟环境和依赖包。
- Git:用于版本控制和项目管理。
3. 项目安装和配置的准备工作和详细安装步骤
3.1 准备工作
在开始安装和配置 LTSF-Linear 项目之前,请确保您的系统已经安装了以下软件:
- Python 3.6.9:LTSF-Linear 项目要求 Python 3.6.9 版本。
- Conda:用于创建和管理虚拟环境。
- Git:用于克隆项目代码库。
3.2 详细安装步骤
3.2.1 克隆项目代码库
首先,使用 Git 克隆 LTSF-Linear 项目的代码库到本地:
git clone https://github.com/cure-lab/LTSF-Linear.git
cd LTSF-Linear
3.2.2 创建 Conda 虚拟环境
接下来,使用 Conda 创建一个新的虚拟环境,并激活该环境:
conda create -n LTSF_Linear python=3.6.9
conda activate LTSF_Linear
3.2.3 安装项目依赖
在激活的虚拟环境中,安装项目所需的依赖包:
pip install -r requirements.txt
3.2.4 数据准备
LTSF-Linear 项目需要一些预处理的数据集。您可以从 Google Drive 下载这些数据集,并将其放置在项目的 dataset 目录中:
mkdir dataset
# 将下载的数据集文件放置在 dataset 目录中
3.2.5 运行示例脚本
安装完成后,您可以运行示例脚本来验证安装是否成功。例如,运行 LTSF-Linear 模型在 Exchange-Rate 数据集上的训练脚本:
sh scripts/EXP-LongForecasting/Linear/exchange_rate.sh
该脚本将默认使用 DLinear 模型进行训练,训练结果将显示在 logs/LongForecasting 目录中。
3.3 其他注意事项
- 模型选择:在脚本中,您可以通过指定模型名称(如
Linear、DLinear、NLinear)来选择不同的模型进行训练。 - 日志查看:训练过程中的日志将存储在
logs/目录中,您可以查看这些日志以了解训练进度和结果。
通过以上步骤,您应该能够成功安装和配置 LTSF-Linear 项目,并开始进行时间序列预测任务的实验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248