Kimurai 框架使用教程
项目介绍
Kimurai 是一个现代的基于 Ruby 编写的网络抓取框架。它设计用于无缝地工作在 Headless Chromium 或 Firefox、PhantomJS 环境中,支持简单的 HTTP 请求,并能够处理和交互JavaScript渲染的网站。该项目提供了强大的工具来构建高效、灵活的爬虫程序,适合那些寻求高度定制化和对现代Web结构进行深入挖掘的开发者。Kimurai 在 GitHub 上的地址为:https://github.com/vifreefly/kimuraframework。
项目快速启动
要快速启动 Kimurai,首先确保你的系统满足最低的 Ruby 版本要求(≥2.5.0)。如果你使用的是 Ubuntu 18.04,可以按照以下步骤安装 Ruby 和 Kimurai:
-
安装必要的包:
sudo apt update sudo apt install git-core curl zlib1g-dev build-essential libssl-dev libreadline-dev \ libyaml-dev libxml2-dev libxslt1-dev libcurl4-openssl-dev libffi-dev -
安装 rbenv 和 ruby-build:
git clone https://github.com/rbenv/rbenv.git ~/.rbenv echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc echo 'eval "$(rbenv init -)"' >> ~/.bashrc exec $SHELL git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build安装完成后,选择并安装一个兼容的 Ruby 版本,例如 Ruby 2.5.0+。
-
安装 Kimurai: 首先通过
gem install kimurai命令安装 Kimurai 及其依赖项。 -
创建并运行第一个蜘蛛(Spider): 创建一个新的文件,如
example_spider.rb,并将以下代码放入该文件:require 'kimurai' class ExampleSpider < Kimurai::Base @name = "example_spider" @engine = :mechanize @start_urls = ["http://example.com"] def parse(response) title = response.xpath('//title').text.squish # 根据需求处理数据 end end ExampleSpider.crawl!运行此脚本以执行你的首个 Kimurai 爬虫。
应用案例和最佳实践
- 集成到现有应用:Kimurai 的蜘蛛可以直接整合进你的 Rails 或 Sinatra 应用中,利用后台作业(如 Sidekiq)管理爬虫任务。
- 异步处理:利用多线程或多进程特性提高爬取速度,确保优雅地处理请求限制和异常。
- 数据持久化:爬取的数据应考虑存储策略,比如使用数据库(MySQL、PostgreSQL 或 MongoDB),并且 Kimurai 提供了相应的客户端设置。
典型生态项目
虽然 Kimurai 本身作为一个独立的框架提供了丰富的功能,其生态系统包括但不限于自定义中间件、数据处理库、以及与数据分析工具的集成。开发人员通常结合使用 ActiveRecord (或同类ORM) 来存储抓取数据,或者通过 Elasticsearch 等搜索引擎来索引数据,以便于后续分析和检索。
请注意,为了保持最佳性能和合规性,务必遵循目标网站的 robots.txt 规则,并合理控制请求频率,避免给目标服务器造成不必要的负担。
以上便是 Kimurai 的基本教程,希望这能帮助你快速上手并有效地利用这个强大的网络抓取框架。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00