Kimurai 框架使用教程
项目介绍
Kimurai 是一个现代的基于 Ruby 编写的网络抓取框架。它设计用于无缝地工作在 Headless Chromium 或 Firefox、PhantomJS 环境中,支持简单的 HTTP 请求,并能够处理和交互JavaScript渲染的网站。该项目提供了强大的工具来构建高效、灵活的爬虫程序,适合那些寻求高度定制化和对现代Web结构进行深入挖掘的开发者。Kimurai 在 GitHub 上的地址为:https://github.com/vifreefly/kimuraframework。
项目快速启动
要快速启动 Kimurai,首先确保你的系统满足最低的 Ruby 版本要求(≥2.5.0)。如果你使用的是 Ubuntu 18.04,可以按照以下步骤安装 Ruby 和 Kimurai:
-
安装必要的包:
sudo apt update sudo apt install git-core curl zlib1g-dev build-essential libssl-dev libreadline-dev \ libyaml-dev libxml2-dev libxslt1-dev libcurl4-openssl-dev libffi-dev
-
安装 rbenv 和 ruby-build:
git clone https://github.com/rbenv/rbenv.git ~/.rbenv echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc echo 'eval "$(rbenv init -)"' >> ~/.bashrc exec $SHELL git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build
安装完成后,选择并安装一个兼容的 Ruby 版本,例如 Ruby 2.5.0+。
-
安装 Kimurai: 首先通过
gem install kimurai
命令安装 Kimurai 及其依赖项。 -
创建并运行第一个蜘蛛(Spider): 创建一个新的文件,如
example_spider.rb
,并将以下代码放入该文件:require 'kimurai' class ExampleSpider < Kimurai::Base @name = "example_spider" @engine = :mechanize @start_urls = ["http://example.com"] def parse(response) title = response.xpath('//title').text.squish # 根据需求处理数据 end end ExampleSpider.crawl!
运行此脚本以执行你的首个 Kimurai 爬虫。
应用案例和最佳实践
- 集成到现有应用:Kimurai 的蜘蛛可以直接整合进你的 Rails 或 Sinatra 应用中,利用后台作业(如 Sidekiq)管理爬虫任务。
- 异步处理:利用多线程或多进程特性提高爬取速度,确保优雅地处理请求限制和异常。
- 数据持久化:爬取的数据应考虑存储策略,比如使用数据库(MySQL、PostgreSQL 或 MongoDB),并且 Kimurai 提供了相应的客户端设置。
典型生态项目
虽然 Kimurai 本身作为一个独立的框架提供了丰富的功能,其生态系统包括但不限于自定义中间件、数据处理库、以及与数据分析工具的集成。开发人员通常结合使用 ActiveRecord (或同类ORM) 来存储抓取数据,或者通过 Elasticsearch 等搜索引擎来索引数据,以便于后续分析和检索。
请注意,为了保持最佳性能和合规性,务必遵循目标网站的 robots.txt
规则,并合理控制请求频率,避免给目标服务器造成不必要的负担。
以上便是 Kimurai 的基本教程,希望这能帮助你快速上手并有效地利用这个强大的网络抓取框架。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









