PyTorch教程中的损失计算优化问题解析
2025-05-27 18:41:10作者:何举烈Damon
在PyTorch官方教程的优化部分,有一个关于损失计算和优化的细节值得深入探讨。本文将从深度学习训练的基本原理出发,分析损失计算的标准做法及其背后的数学原理。
批量训练中的损失计算
在深度学习的训练过程中,我们通常会将数据集分成多个批次(batch)进行训练。每个批次的损失计算是训练过程中的关键环节。PyTorch教程中展示了标准的做法:在测试阶段,我们将每个批次的损失累加,最后除以批次数目得到平均损失。
这种做法是正确的,原因在于:
- 每个批次的损失已经是该批次所有样本损失的平均值
- 累加多个批次的平均损失后,除以批次数目可以得到整个测试集的平均损失
数学原理分析
假设我们有一个测试集包含N个样本,分成k个批次,每个批次有n_i个样本(n_1 + n_2 + ... + n_k = N)。对于每个批次,我们计算的是:
L_i = (1/n_i) * Σ loss(x_j)
在测试循环中,我们累加的是这些批次平均损失:
total_loss = Σ L_i = Σ [(1/n_i) * Σ loss(x_j)]
最后除以批次数k得到:
average_loss = (1/k) * total_loss
这种计算方式等价于对整个测试集的平均损失,因为当所有批次大小相同时(n_i = N/k):
average_loss = (1/k) * Σ [(k/N) * Σ loss(x_j)] = (1/N) * Σ loss(x_j)
优化器的正确使用
关于优化器的使用,教程中的做法也是标准的。优化器的工作是基于当前批次的梯度来更新模型参数,不需要考虑整体数据集的规模。这是因为:
- 每个批次的梯度已经是该批次样本梯度的平均值
- 学习率(learning rate)的设定已经考虑了梯度的大小
实际应用建议
在实际项目中,处理损失计算时应注意:
- 训练阶段通常直接使用每个批次的平均损失进行反向传播
- 测试/验证阶段可以像教程中那样计算整体平均损失用于评估
- 当批次大小不一致时,可能需要考虑加权平均
- 对于特别大的数据集,这种分批计算平均损失的方法是内存高效的
理解这些细节有助于开发者正确实现训练循环,并准确评估模型性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248