JupyterLab代码格式化插件(JupyterLab Code Formatter)安装与使用指南
1. 项目的目录结构及介绍
该项目的主要目录及其用途概述如下:
-
dockerignore
此文件用于Docker容器内排除不需要的文件夹或文件。 -
gitignore
Git版本控制忽略规则文件,列出不应提交到仓库的文件类型或路径。 -
prettierignore
Prettier代码美化工具应忽略的文件路径配置。 -
yarnrc.yml
Yarn包管理工具的配置文件。 -
CHANGELOG.md
记录软件每次发布的重要变更和改进历史。 -
LICENSE
开源许可证声明,规定了代码使用和再分配的条件。 -
README.md
描述项目的总体信息、特性、以及如何安装和使用的入门指引。 -
RELEASE.md
具体记录各版本的功能增强点、bug修复和其他关键变动。 -
Taskfile.yml
使用Task自动构建和自动化工作流任务的描述文件。 -
babel.config.js
Babel JavaScript编译器的转换规则设定。 -
conftest.py
pytest测试框架的全局配置脚本,指定测试行为和环境。 -
dev.Dockerfile
构建开发环境用的Docker镜像所需指令集合。 -
github/workflows/
Github Actions持续集成(CI)流程的自动化执行脚本存放目录。 -
jupyter-config/
Jupyter服务器和笔记本配置参数的目录,存储定制化的初始化设置。 -
jupyterlab_code_formatter/
JupyterLab插件主目录,包含插件核心功能代码。 -
schema/
JSON Schema格式检查规则定义,确保数据格式正确无误。 -
scripts/
自定义Shell命令序列,简化复杂操作步骤,如打包、部署等。 -
src/
存储应用主要逻辑与业务处理的源代码部分。 -
styles/
CSS样式表文件存放位置,用于界面布局和外观设计调整。 -
test_snippets/
测试案例数据片段库,用于验证程序功能是否按预期运行。 -
ui-tests/
用户交互层面的自动化测试脚本集合。
2. 项目的启动文件介绍
具体启动文件及相关说明:
虽然直接的启动文件名称没有在提供的文本中明确提及,但基于JupyterLab插件的工作机制,实际项目运行往往依赖于JupyterLab本身的启动过程。因此,在本地环境中激活JupyterLab Code Formatter插件,通常的操作包括:
-
jupyter labextension install . 安装当前项目作为JupyterLab的可拓展插件。
-
jupyter serverextension enable --sys-prefix 启用插件相关的服务器端扩展,保证其功能在Jupyter服务运行时被加载。
当这些命令被执行后,重启JupyterLab服务器,插件将随JupyterLab一同启动,提供代码格式化能力。在这个过程中,项目的入口可能是位于jupyterlab_code_formatter目录下的某些模块,它们会在加载时刻被调用以注册插件的行为。
3. 项目的配置文件介绍
主要配置项概述
- preferences 保存用户的偏好设置,例如默认的代码格式化工具选择。
例如,用户可以通过以下JSON片段来设置首选的格式化工具:
{
"preferences": {
"default_formatter": {
"python": "autopep8",
"R": "styler"
}
}
}
在这个示例中,对于Python代码,默认使用的格式化工具有autopep8;而对于R语言,则是styler。
- formatters 格式化工具的详细配置列表,覆盖各种编程语言和特定的工具选项。
具体配置示例如下:
{
"formatters": [
{
"name": "black",
"command": ["black", "--fast"],
"language": "python"
},
{
"name": "isort",
"command": ["isort"],
"language": "python"
}
]
}
这表示black将以快速模式(--fast)运行,而isort则使用默认参数,二者都应用于Python代码的格式化处理。
以上配置文件允许用户高度定制他们偏好的代码格式化方式,从而增强了JupyterLab工作空间的一致性和美观性。
请注意,上述目录结构、启动流程和配置详解均基于文本叙述和JupyterLab插件常见实践进行了归纳总结。实际项目细节可能会因具体版本和开发者习惯有所差异。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00