SHAP项目0.46.0版本发布:TensorFlow 2.16与Keras 3支持升级
近期SHAP项目团队正式发布了0.46.0版本,这是该机器学习可解释性工具库的重要更新。本次版本升级的核心在于对TensorFlow 2.16和Keras 3的全面支持,为深度学习用户提供了更好的兼容性体验。
在版本发布准备过程中,开发团队重点关注了以下几个技术环节:
-
API兼容性优化:针对TensorFlow和Keras的API变更进行了全面适配,确保原有功能在新版本框架下能够稳定运行。团队特别处理了与模型解释相关的底层计算逻辑,保证SHAP值计算的准确性不受框架升级影响。
-
构建流程验证:通过CI/CD流水线进行了完整的构建测试,包括跨平台wheel包的构建验证。测试覆盖了Linux、Windows和macOS三大平台,确保不同环境下的安装兼容性。
-
依赖管理改进:对项目依赖声明进行了精细化调整,明确了与TensorFlow/Keras各版本的兼容范围。这种细粒度的依赖管理可以有效避免用户环境中的版本冲突问题。
-
警告信息优化:根据项目长期维护计划,团队系统性地整理了即将废弃功能的警告信息,帮助用户提前识别需要调整的代码部分,为后续版本变更做好准备。
对于使用conda包管理器的用户,团队正在与conda-forge社区协作解决测试环节发现的问题。这些测试失败主要涉及特定环境配置下的边缘案例,预计将在短期内得到解决。
该版本的发布标志着SHAP项目在深度学习生态支持方面又迈出了重要一步。对于使用最新版TensorFlow/Keras进行模型开发的用户,现在可以更便捷地获得模型可解释性分析支持。项目团队建议用户尽快升级以获得最佳体验,同时也欢迎社区反馈使用过程中遇到的任何问题。
未来版本规划中,团队将继续完善可视化功能,这些改进预计将在0.47.0版本中与用户见面。对于希望参与贡献的开发者,项目仓库始终开放着多个适合不同技能水平的开发任务。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









