SHAP项目0.46.0版本发布:TensorFlow 2.16与Keras 3支持升级
近期SHAP项目团队正式发布了0.46.0版本,这是该机器学习可解释性工具库的重要更新。本次版本升级的核心在于对TensorFlow 2.16和Keras 3的全面支持,为深度学习用户提供了更好的兼容性体验。
在版本发布准备过程中,开发团队重点关注了以下几个技术环节:
-
API兼容性优化:针对TensorFlow和Keras的API变更进行了全面适配,确保原有功能在新版本框架下能够稳定运行。团队特别处理了与模型解释相关的底层计算逻辑,保证SHAP值计算的准确性不受框架升级影响。
-
构建流程验证:通过CI/CD流水线进行了完整的构建测试,包括跨平台wheel包的构建验证。测试覆盖了Linux、Windows和macOS三大平台,确保不同环境下的安装兼容性。
-
依赖管理改进:对项目依赖声明进行了精细化调整,明确了与TensorFlow/Keras各版本的兼容范围。这种细粒度的依赖管理可以有效避免用户环境中的版本冲突问题。
-
警告信息优化:根据项目长期维护计划,团队系统性地整理了即将废弃功能的警告信息,帮助用户提前识别需要调整的代码部分,为后续版本变更做好准备。
对于使用conda包管理器的用户,团队正在与conda-forge社区协作解决测试环节发现的问题。这些测试失败主要涉及特定环境配置下的边缘案例,预计将在短期内得到解决。
该版本的发布标志着SHAP项目在深度学习生态支持方面又迈出了重要一步。对于使用最新版TensorFlow/Keras进行模型开发的用户,现在可以更便捷地获得模型可解释性分析支持。项目团队建议用户尽快升级以获得最佳体验,同时也欢迎社区反馈使用过程中遇到的任何问题。
未来版本规划中,团队将继续完善可视化功能,这些改进预计将在0.47.0版本中与用户见面。对于希望参与贡献的开发者,项目仓库始终开放着多个适合不同技能水平的开发任务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00