DeepVariant项目中DeepTrio流程内存不足问题的解决方案
在使用DeepVariant项目的DeepTrio流程进行基因组变异检测时,用户可能会遇到内存不足的问题,特别是在后处理变体(postprocess_variants)步骤。本文将详细介绍这一问题的背景原因和解决方案。
问题背景
DeepTrio流程是DeepVariant项目中用于三样本(父母和孩子)联合分析的工具链。该流程包含多个步骤,其中postprocess_variants步骤负责对call_variants步骤生成的中间结果进行后处理,最终输出VCF格式的变异检测结果。
由于postprocess_variants步骤需要将所有变异调用加载到内存中进行排序,当处理大规模基因组数据时,这一步骤可能会消耗大量内存,即使配置了64GB内存的系统也可能出现内存不足(OOM)错误。
解决方案
当流程在postprocess_variants步骤因内存不足而中断时,可以采用以下方法从该步骤重新开始,而无需从头运行整个流程:
-
定位中间文件:在临时目录中找到call_variants步骤生成的中间结果文件,这些文件通常以call_variants_output_为前缀,后跟样本标识(如parent1)。
-
单独运行postprocess_variants:使用Singularity容器直接调用postprocess_variants工具,而非运行完整的run_deeptrio脚本。基本命令格式如下:
singularity run \
google/deepvariant:deeptrio-"${BIN_VERSION}" \
/opt/deepvariant/bin/postprocess_variants
- 设置必要参数:至少需要指定参考基因组(--ref)、输入文件(--infile)和输出文件(--outfile)三个参数。输入文件应指向call_variants步骤生成的中间结果。
流程完整性说明
postprocess_variants是DeepTrio流程中生成最终VCF文件的最后一步。完成此步骤后,用户即获得了完整的变异检测结果。
此外,流程还提供了一个可选步骤用于生成VCF统计报告,该报告可用于进一步分析变异检测结果的质量和特征。但这一步骤不是必须的,用户可根据实际需求决定是否执行。
技术展望
DeepVariant开发团队已经意识到postprocess_variants步骤的内存问题,并正在积极优化这一部分的实现。未来的版本可能会改进内存管理机制,减少大规模数据处理时的内存需求。
对于当前版本的用户,上述解决方案提供了一种有效的工作绕过方法,可以在不损失已有计算结果的情况下完成整个分析流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00