DeepVariant项目中DeepTrio流程内存不足问题的解决方案
在使用DeepVariant项目的DeepTrio流程进行基因组变异检测时,用户可能会遇到内存不足的问题,特别是在后处理变体(postprocess_variants)步骤。本文将详细介绍这一问题的背景原因和解决方案。
问题背景
DeepTrio流程是DeepVariant项目中用于三样本(父母和孩子)联合分析的工具链。该流程包含多个步骤,其中postprocess_variants步骤负责对call_variants步骤生成的中间结果进行后处理,最终输出VCF格式的变异检测结果。
由于postprocess_variants步骤需要将所有变异调用加载到内存中进行排序,当处理大规模基因组数据时,这一步骤可能会消耗大量内存,即使配置了64GB内存的系统也可能出现内存不足(OOM)错误。
解决方案
当流程在postprocess_variants步骤因内存不足而中断时,可以采用以下方法从该步骤重新开始,而无需从头运行整个流程:
-
定位中间文件:在临时目录中找到call_variants步骤生成的中间结果文件,这些文件通常以call_variants_output_为前缀,后跟样本标识(如parent1)。
-
单独运行postprocess_variants:使用Singularity容器直接调用postprocess_variants工具,而非运行完整的run_deeptrio脚本。基本命令格式如下:
singularity run \
google/deepvariant:deeptrio-"${BIN_VERSION}" \
/opt/deepvariant/bin/postprocess_variants
- 设置必要参数:至少需要指定参考基因组(--ref)、输入文件(--infile)和输出文件(--outfile)三个参数。输入文件应指向call_variants步骤生成的中间结果。
流程完整性说明
postprocess_variants是DeepTrio流程中生成最终VCF文件的最后一步。完成此步骤后,用户即获得了完整的变异检测结果。
此外,流程还提供了一个可选步骤用于生成VCF统计报告,该报告可用于进一步分析变异检测结果的质量和特征。但这一步骤不是必须的,用户可根据实际需求决定是否执行。
技术展望
DeepVariant开发团队已经意识到postprocess_variants步骤的内存问题,并正在积极优化这一部分的实现。未来的版本可能会改进内存管理机制,减少大规模数据处理时的内存需求。
对于当前版本的用户,上述解决方案提供了一种有效的工作绕过方法,可以在不损失已有计算结果的情况下完成整个分析流程。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









