D-AMP_Toolbox 开源项目教程
2025-05-18 15:55:46作者:冯梦姬Eddie
1. 项目介绍
D-AMP_Toolbox 是一个包含多种信号重建算法的 MATLAB 和 TensorFlow 实现。这个工具箱旨在为研究人员和工程师提供一套强大的算法,用于压缩感知和图像重建。它实现了以下算法:
- D-AMP
- D-VAMP
- D-prGAMP
- DnCNN
- 以及其他相关算法
这些算法主要基于以下论文:
- Metzler 等人的 "From denoising to compressed sensing"
- BM3D-PRGAMP: Compressive phase retrieval based on BM3D denoising
- Denoising based vector approximate message passing
- Learned D-AMP: Principled Neural Network based Compressive Image Recovery
- Unsupervised Learning with Stein's Unbiased Risk Estimator
2. 项目快速启动
以下是如何在本地快速启动 D-AMP_Toolbox 的步骤。
首先,确保你已经安装了 MATLAB 和 Python(对于 TensorFlow 部分)。
% 克隆项目到本地
git clone https://github.com/ricedsp/D-AMP_Toolbox.git
% 进入项目目录
cd D-AMP_Toolbox
% 在 MATLAB 环境中,运行以下命令以添加必要的路径
addpath('path/to/D-AMP_Toolbox');
对于 TensorFlow 部分,你需要安装 TensorFlow 1.7 和 Python 2.7,并下载必要的模型和训练数据。
# 下载模型和训练数据
wget https://rice.app.box.com/v/LDAMP-LargeFiles -P D-AMP_Toolbox/LDAMP_TensorFlow/saved_models/
然后在 MATLAB 中运行相应的 TensorFlow 示例。
% 运行 TensorFlow 示例
run('D-AMP_Toolbox/LDAMP_TensorFlow/TrainLearnedDAMP.py');
3. 应用案例和最佳实践
以下是一些应用案例和最佳实践:
应用案例
- 图像重建:使用 D-AMP 或 D-VAMP 算法从压缩感知数据中重建图像。
- 信号去噪:利用 DnCNN 对信号进行去噪处理。
最佳实践
- 在使用算法之前,确保已经对数据进行了适当的预处理。
- 针对不同的数据类型和噪声水平,选择合适的算法和参数。
- 在实际应用中,可以通过多次迭代来提高重建质量。
4. 典型生态项目
以下是一些与 D-AMP_Toolbox 相关的典型生态项目:
- GAMPmatlab:一个用于近似消息传递算法的 MATLAB 工具箱,与 D-AMP 和 D-VAMP 算法相关。
- Matconvnet:一个用于 MATLAB 的卷积神经网络库,可用于实现 DnCNN 算法。
- deep-image-prior:一个基于深度学习的图像去噪项目,与 SUREDeepImagePrior 相关。
以上就是 D-AMP_Toolbox 的开源项目教程。希望对你有所帮助!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
627
142
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.53 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
622
仓颉编译器源码及 cjdb 调试工具。
C++
128
857