Apache DevLake DORA 仪表盘性能优化实践
2025-06-29 16:21:08作者:滑思眉Philip
背景介绍
Apache DevLake 是一个开源的数据湖平台,用于收集、分析和可视化软件开发过程中的各项指标。其中 DORA(DevOps Research and Assessment)仪表盘是核心功能之一,用于展示研发效能的关键指标。
性能问题分析
在 v1.0.1-beta5 版本中,DORA 仪表盘的两个关键面板"Overall DORA Metrics"和"Change Failure Rate"存在严重的性能问题。原始SQL查询执行时间长达31.7秒,严重影响用户体验。
通过分析发现,问题出在以下SQL查询结构上:
SELECT
CASE
WHEN COUNT(i.id) = 0 AND COUNT(cdc.id) = 0 THEN 'No All'
WHEN COUNT(i.id) = 0 THEN 'No Incidents'
WHEN COUNT(cdc.id) = 0 THEN 'No Deployments'
END AS is_collected
FROM
(SELECT 1) AS dummy
LEFT JOIN incidents i ON 1 = 1
LEFT JOIN cicd_deployment_commits cdc ON 1 = 1;
这种写法会导致数据库执行笛卡尔积运算,当incidents表有3193条记录,cicd_deployment_commits表有177462条记录时,会产生约567亿条中间结果,造成巨大的计算开销。
优化方案
优化思路
- 避免全表连接:原始查询无条件连接两个大表,这是性能瓶颈的根本原因
- 提前聚合:先对两个表分别进行计数,再进行结果合并
- 添加过滤条件:结合项目筛选和时间范围过滤,减少数据处理量
优化后的SQL
SELECT
CASE
WHEN i.cnt = 0 AND cdc.cnt = 0 THEN 'No All'
WHEN i.cnt = 0 THEN 'No Incidents'
WHEN cdc.cnt = 0 THEN 'No Deployments'
END AS is_collected
FROM
(
SELECT COUNT(*) AS cnt FROM incidents i
JOIN project_mapping pm ON i.scope_id = pm.row_id AND pm.`table` = i.`table`
WHERE pm.project_name IN (${project}) AND $__timeFilter(i.created_date)
) AS i
LEFT JOIN (
SELECT COUNT(*) AS cnt FROM cicd_deployment_commits cdc
JOIN project_mapping pm ON cdc.cicd_scope_id = pm.row_id AND pm.`table` = 'cicd_scopes'
WHERE pm.project_name IN (${project}) AND $__timeFilter(cdc.finished_date)
) AS cdc ON 1 = 1;
优化效果
优化后的查询执行时间从31.7秒降低到0.02秒,性能提升了约1500倍。这主要得益于:
- 消除了笛卡尔积运算
- 利用了索引扫描(incidents_resolution_date_idx和cicd_deployment_commits_finished_date_idx)
- 减少了中间结果集的大小
技术要点
- SQL优化原则:避免不必要的表连接,特别是无条件连接大表
- Grafana最佳实践:合理使用模板变量(如__timeFilter)
- 数据模型理解:正确关联project_mapping表以支持多项目筛选
- 索引利用:确保查询能够利用现有索引提高效率
总结
通过对DORA仪表盘SQL查询的重构,我们解决了性能瓶颈问题。这个案例展示了在数据可视化场景中,SQL查询优化的重要性。开发者在编写类似查询时,应该:
- 始终考虑数据量和连接方式的影响
- 优先使用过滤条件减少数据处理量
- 合理利用数据库索引
- 避免产生不必要的中间结果
这种优化思路不仅适用于Apache DevLake项目,对于其他需要处理大量数据的仪表盘开发也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895