Apache DevLake DORA 仪表盘性能优化实践
2025-06-29 21:13:38作者:滑思眉Philip
背景介绍
Apache DevLake 是一个开源的数据湖平台,用于收集、分析和可视化软件开发过程中的各项指标。其中 DORA(DevOps Research and Assessment)仪表盘是核心功能之一,用于展示研发效能的关键指标。
性能问题分析
在 v1.0.1-beta5 版本中,DORA 仪表盘的两个关键面板"Overall DORA Metrics"和"Change Failure Rate"存在严重的性能问题。原始SQL查询执行时间长达31.7秒,严重影响用户体验。
通过分析发现,问题出在以下SQL查询结构上:
SELECT
CASE
WHEN COUNT(i.id) = 0 AND COUNT(cdc.id) = 0 THEN 'No All'
WHEN COUNT(i.id) = 0 THEN 'No Incidents'
WHEN COUNT(cdc.id) = 0 THEN 'No Deployments'
END AS is_collected
FROM
(SELECT 1) AS dummy
LEFT JOIN incidents i ON 1 = 1
LEFT JOIN cicd_deployment_commits cdc ON 1 = 1;
这种写法会导致数据库执行笛卡尔积运算,当incidents表有3193条记录,cicd_deployment_commits表有177462条记录时,会产生约567亿条中间结果,造成巨大的计算开销。
优化方案
优化思路
- 避免全表连接:原始查询无条件连接两个大表,这是性能瓶颈的根本原因
- 提前聚合:先对两个表分别进行计数,再进行结果合并
- 添加过滤条件:结合项目筛选和时间范围过滤,减少数据处理量
优化后的SQL
SELECT
CASE
WHEN i.cnt = 0 AND cdc.cnt = 0 THEN 'No All'
WHEN i.cnt = 0 THEN 'No Incidents'
WHEN cdc.cnt = 0 THEN 'No Deployments'
END AS is_collected
FROM
(
SELECT COUNT(*) AS cnt FROM incidents i
JOIN project_mapping pm ON i.scope_id = pm.row_id AND pm.`table` = i.`table`
WHERE pm.project_name IN (${project}) AND $__timeFilter(i.created_date)
) AS i
LEFT JOIN (
SELECT COUNT(*) AS cnt FROM cicd_deployment_commits cdc
JOIN project_mapping pm ON cdc.cicd_scope_id = pm.row_id AND pm.`table` = 'cicd_scopes'
WHERE pm.project_name IN (${project}) AND $__timeFilter(cdc.finished_date)
) AS cdc ON 1 = 1;
优化效果
优化后的查询执行时间从31.7秒降低到0.02秒,性能提升了约1500倍。这主要得益于:
- 消除了笛卡尔积运算
- 利用了索引扫描(incidents_resolution_date_idx和cicd_deployment_commits_finished_date_idx)
- 减少了中间结果集的大小
技术要点
- SQL优化原则:避免不必要的表连接,特别是无条件连接大表
- Grafana最佳实践:合理使用模板变量(如__timeFilter)
- 数据模型理解:正确关联project_mapping表以支持多项目筛选
- 索引利用:确保查询能够利用现有索引提高效率
总结
通过对DORA仪表盘SQL查询的重构,我们解决了性能瓶颈问题。这个案例展示了在数据可视化场景中,SQL查询优化的重要性。开发者在编写类似查询时,应该:
- 始终考虑数据量和连接方式的影响
- 优先使用过滤条件减少数据处理量
- 合理利用数据库索引
- 避免产生不必要的中间结果
这种优化思路不仅适用于Apache DevLake项目,对于其他需要处理大量数据的仪表盘开发也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30