DN-Splatter 项目使用教程
2026-01-20 01:34:29作者:胡唯隽
1. 项目介绍
DN-Splatter 是一个扩展了 3D Gaussian Splatting 技术的开源项目,通过引入深度和法线线索来处理具有挑战性的室内数据集,并展示高效的网格提取技术。该项目旨在提高 VR 和 AR 应用中的高保真 3D 重建效果,特别是在室内场景中。
主要特点
- 深度和法线监督:通过深度信息和法线线索来优化 3D Gaussian Splatting 过程。
- 高效的网格提取:提供多种网格提取方法,包括 Poisson 重建和 TSDF 融合。
- 支持多种数据集:支持 MuSHRoom、Replica、ScanNet++ 等多种室内数据集。
2. 项目快速启动
安装
方法 1:使用 Conda 和 Pip
-
激活 Nerfstudio 环境:
conda activate nerfstudio -
克隆并安装 DN-Splatter:
git clone https://github.com/maturk/dn-splatter cd dn_splatter/ pip install setuptools==69.5.1 pip install -e .
方法 2:使用 Pixi
-
下载 Pixi 包管理器并安装 DN-Splatter:
git clone https://github.com/maturk/dn-splatter cd dn_splatter/ pixi install -
运行示例:
pixi run example -
激活 Conda 环境:
pixi shell
使用
以下是一些常用的命令和设置:
ns-train dn-splatter --data PATH_TO_DATA \
--pipeline.model.use-depth-loss True \
--pipeline.model.sensor-depth-lambda 0.2 \
--pipeline.model.use-depth-smooth-loss True \
--pipeline.model.use-normal-loss True \
--pipeline.model.normal-supervision depth
3. 应用案例和最佳实践
应用案例
室内场景重建
DN-Splatter 特别适用于室内场景的高保真 3D 重建,例如使用 MuSHRoom 数据集进行房间级别的重建。
物体中心重建
对于小型物体,可以使用以下设置进行重建:
ns-train dn-splatter --data PATH_TO_DATA \
--pipeline.model.use-depth-smooth-loss True \
--pipeline.model.use-sparse-loss True \
--pipeline.model.use-binary-opacities True
最佳实践
- 数据预处理:确保输入数据的质量,特别是深度和法线信息。
- 参数调优:根据具体应用场景调整深度和法线监督的权重。
- 网格提取:根据场景大小选择合适的网格提取方法,如 Poisson 或 TSDF。
4. 典型生态项目
Nerfstudio
DN-Splatter 是基于 Nerfstudio 框架开发的,Nerfstudio 是一个用于 NeRF(Neural Radiance Fields)的开源项目,提供了丰富的工具和库来支持 3D 重建和渲染。
Omnidata
Omnidata 是一个用于生成单目深度和法线估计的预训练模型,DN-Splatter 支持使用 Omnidata 生成的法线进行监督。
ScanNet++
ScanNet++ 是一个大规模的室内 3D 扫描数据集,DN-Splatter 支持使用 ScanNet++ 数据集进行训练和评估。
通过这些生态项目的支持,DN-Splatter 能够更好地处理复杂的室内场景,提供高质量的 3D 重建结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896