在NVIDIA/stdexec中使用any_sender与协程的集成指南
2025-07-07 17:44:18作者:伍霜盼Ellen
背景介绍
在异步编程领域,NVIDIA的stdexec库提供了一套强大的工具来处理发送者(sender)和接收者(receiver)模式。其中,any_sender类型是一个类型擦除的发送者,可以容纳任何符合发送者概念的类型,为开发者提供了极大的灵活性。
问题描述
当开发者尝试将any_sender与协程结合使用时,特别是在使用let_value操作符时,可能会遇到连接(connect)失败的问题。具体表现为协程任务(task)无法在any_rec_ref的环境中变为可等待(awaitable)状态。
技术分析
根本原因
问题的核心在于环境(environment)的查询机制。当使用any_sender时:
- 协程任务(task)需要是一个可等待类型
- 可等待性取决于任务是否实现了
indirect_scheduler_provider概念 any_rec_ref默认不转发查询请求- 导致任务无法获取所需的调度器信息,从而无法满足可等待性要求
解决方案
正确的解决方法是明确指定接收者的查询能力。通过为any_receiver_ref提供查询支持,特别是get_scheduler查询,可以确保协程任务能够获取所需的调度器信息。
实现示例
以下是正确使用any_sender与协程的示例代码:
// 定义包含get_scheduler查询的标签集合
using my_queries = exec::make_env_t<
exec::with_t<stdexec::get_scheduler_t, stdexec::inline_scheduler>>;
// 创建any_sender并保留查询能力
auto create_any_sender() {
return stdexec::just(42)
| stdexec::let_value([](int value) -> stdexec::task<int> {
co_return value + 1;
});
}
// 使用any_sender
void use_any_sender() {
auto sender = create_any_sender();
// 使用带有查询支持的any_receiver_ref
stdexec::any_receiver_ref<my_queries> receiver = ...;
stdexec::start(stdexec::connect(std::move(sender), std::move(receiver)));
}
最佳实践
- 明确查询需求:在使用
any_sender和协程时,始终考虑需要哪些环境查询 - 类型安全:使用
make_env_t明确指定支持的查询类型 - 性能考量:类型擦除会带来一定的运行时开销,在性能敏感场景慎用
- 错误处理:确保协程和发送者都有适当的错误处理机制
结论
通过正确配置接收者的查询能力,可以成功地将any_sender与协程任务结合使用。这种组合为开发者提供了类型擦除的灵活性,同时保留了协程编程的直观性,是构建复杂异步系统的有力工具。
理解环境查询机制是掌握stdexec高级用法的关键,特别是在处理类型擦除和协程集成时。希望本文能帮助开发者避免常见的陷阱,更高效地使用stdexec库。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885