React Native Expo 单元测试中解决 superjson 导入错误问题
在 React Native 开发中,使用 Expo 框架进行单元测试时,开发者可能会遇到一个常见问题:SyntaxError: Cannot use import statement outside a module。这个错误通常出现在测试环境中尝试导入 superjson 包时。
问题背景
superjson 是一个流行的 JavaScript 库,它能够将复杂的 JavaScript 对象(如 Date、RegExp 等)序列化为 JSON,并在反序列化时保持原始类型。在 React Native 项目中,特别是使用 Expo 框架时,测试配置需要特别注意对某些包的转换处理。
错误原因分析
这个错误的发生是因为 Jest 测试运行器默认会忽略 node_modules 目录中的文件转换。当测试代码尝试导入 superjson 时,Jest 没有对其进行 Babel 转换,导致 ES6 的 import 语句无法被识别。
解决方案
解决这个问题的关键在于修改 Jest 的 transformIgnorePatterns 配置。在 React Native Expo 项目中,我们需要确保 superjson 包不会被 Jest 忽略转换。
典型的解决方案是在 jest.config.js 文件中修改 transformIgnorePatterns 配置,将 superjson 添加到排除列表中:
transformIgnorePatterns: [
`node_modules/(?!(?:.pnpm/)?((jest-)?react-native|@react-native(-community)?|expo(nent)?|@expo(nent)?/.*|@expo-google-fonts/.*|react-navigation|@react-navigation/.*|@unimodules/.*|unimodules|sentry-expo|native-base|react-native-svg|superjson))`
]
配置详解
这个正则表达式模式做了以下工作:
- 匹配 node_modules 目录
- 使用负向先行断言(?!...)排除特定包
- 包含了 React Native 生态系统中常见的包
- 特别添加了 superjson 到白名单中
最佳实践建议
- 保持配置更新:随着项目依赖的增加,可能需要不断更新这个模式来包含新的需要转换的包
- 性能考虑:transformIgnorePatterns 应该尽可能精确,避免不必要的转换影响测试速度
- 环境一致性:确保测试环境与开发/生产环境使用的 Babel 配置一致
- 版本兼容性:检查 superjson 版本与项目其他依赖的兼容性
扩展思考
这个问题不仅限于 superjson 包,任何使用现代 JavaScript 语法(如 ES6 模块)的第三方库都可能遇到类似问题。理解 Jest 的模块转换机制对于 React Native 开发者来说是一项重要技能。
通过正确配置 transformIgnorePatterns,开发者可以确保测试环境能够正确处理各种第三方依赖,从而提高测试的可靠性和项目的稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00