PyTorch/TorchRec项目中大规模EmbeddingBag配置规划的性能优化
问题背景
在PyTorch的推荐系统库TorchRec中,当使用EmbeddingShardingPlanner进行分布式规划时,如果EmbeddingBagConfig的数量超过500个,系统会遇到NCCL通信超时的问题。这个问题在8个GPU的分布式环境下尤为明显,规划过程耗时超过900秒,远超出NCCL默认的超时时间。
技术细节分析
1. 问题复现环境
测试环境使用了以下配置:
- TorchRec 0.8.0 + CUDA 12.1
- PyTorch 2.4.0 + CUDA 12.1
- FBGEMM-GPU 0.8.0 + CUDA 12.1
- 8个GPU的分布式设置
测试脚本创建了500个随机配置的EmbeddingBag表,每个表的嵌入维度在4到16之间随机变化,嵌入数量在2到1000之间随机变化。
2. 问题核心
collective_plan方法的执行时间随着EmbeddingBagConfig数量的增加呈非线性增长。当配置数量达到500时,规划时间超过15分钟,导致NCCL通信超时。即使将NCCL超时时间延长到1小时,规划过程仍然耗时904秒。
性能瓶颈分析
1. 规划算法复杂度
EmbeddingShardingPlanner使用的启发式规划算法在最坏情况下可能具有较高的时间复杂度。随着表数量的增加,规划空间呈指数级增长,导致计算时间急剧上升。
2. 分布式通信开销
collective_plan方法需要在所有GPU之间进行协调和通信,随着规划复杂度的增加,通信次数和通信量也随之增加,这在分布式环境下会放大性能问题。
3. 内存压力
HeuristicalStorageReservation尝试保留70%的GPU内存,对于大规模配置,内存计算和优化本身也会消耗大量时间。
优化建议
1. 分批规划策略
可以将500个表分成若干批次进行规划,每批处理一定数量的表。这种方法虽然可能无法达到全局最优,但可以显著减少单次规划的时间。
2. 缓存规划结果
对于相对静态的表配置,可以考虑缓存规划结果,避免每次运行时都重新规划。
3. 优化规划算法
可以考虑实现更高效的规划算法,如基于动态规划或贪心算法的近似解法,在可接受的时间内获得足够好的解。
4. 调整NCCL参数
虽然这不是根本解决方案,但可以调整NCCL的超时参数和通信参数以适应长时间运行的规划过程。
实际应用建议
对于生产环境中需要处理大规模EmbeddingBag配置的情况,建议:
- 评估是否所有表都需要独立配置,有些表是否可以共享配置
- 考虑使用更粗粒度的分片策略
- 在开发环境中预先计算规划结果
- 监控规划时间随表数量增长的趋势,提前预估资源需求
结论
TorchRec在大规模EmbeddingBag配置下的规划性能问题反映了分布式推荐系统面临的典型挑战。通过算法优化、系统调优和合理的架构设计,可以在保持功能完整性的同时显著提升性能。未来版本的TorchRec可能会针对这一问题提供更优化的内置解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00