PyTorch/TorchRec项目中大规模EmbeddingBag配置规划的性能优化
问题背景
在PyTorch的推荐系统库TorchRec中,当使用EmbeddingShardingPlanner进行分布式规划时,如果EmbeddingBagConfig的数量超过500个,系统会遇到NCCL通信超时的问题。这个问题在8个GPU的分布式环境下尤为明显,规划过程耗时超过900秒,远超出NCCL默认的超时时间。
技术细节分析
1. 问题复现环境
测试环境使用了以下配置:
- TorchRec 0.8.0 + CUDA 12.1
- PyTorch 2.4.0 + CUDA 12.1
- FBGEMM-GPU 0.8.0 + CUDA 12.1
- 8个GPU的分布式设置
测试脚本创建了500个随机配置的EmbeddingBag表,每个表的嵌入维度在4到16之间随机变化,嵌入数量在2到1000之间随机变化。
2. 问题核心
collective_plan方法的执行时间随着EmbeddingBagConfig数量的增加呈非线性增长。当配置数量达到500时,规划时间超过15分钟,导致NCCL通信超时。即使将NCCL超时时间延长到1小时,规划过程仍然耗时904秒。
性能瓶颈分析
1. 规划算法复杂度
EmbeddingShardingPlanner使用的启发式规划算法在最坏情况下可能具有较高的时间复杂度。随着表数量的增加,规划空间呈指数级增长,导致计算时间急剧上升。
2. 分布式通信开销
collective_plan方法需要在所有GPU之间进行协调和通信,随着规划复杂度的增加,通信次数和通信量也随之增加,这在分布式环境下会放大性能问题。
3. 内存压力
HeuristicalStorageReservation尝试保留70%的GPU内存,对于大规模配置,内存计算和优化本身也会消耗大量时间。
优化建议
1. 分批规划策略
可以将500个表分成若干批次进行规划,每批处理一定数量的表。这种方法虽然可能无法达到全局最优,但可以显著减少单次规划的时间。
2. 缓存规划结果
对于相对静态的表配置,可以考虑缓存规划结果,避免每次运行时都重新规划。
3. 优化规划算法
可以考虑实现更高效的规划算法,如基于动态规划或贪心算法的近似解法,在可接受的时间内获得足够好的解。
4. 调整NCCL参数
虽然这不是根本解决方案,但可以调整NCCL的超时参数和通信参数以适应长时间运行的规划过程。
实际应用建议
对于生产环境中需要处理大规模EmbeddingBag配置的情况,建议:
- 评估是否所有表都需要独立配置,有些表是否可以共享配置
- 考虑使用更粗粒度的分片策略
- 在开发环境中预先计算规划结果
- 监控规划时间随表数量增长的趋势,提前预估资源需求
结论
TorchRec在大规模EmbeddingBag配置下的规划性能问题反映了分布式推荐系统面临的典型挑战。通过算法优化、系统调优和合理的架构设计,可以在保持功能完整性的同时显著提升性能。未来版本的TorchRec可能会针对这一问题提供更优化的内置解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00