首页
/ PyTorch/TorchRec项目中大规模EmbeddingBag配置规划的性能优化

PyTorch/TorchRec项目中大规模EmbeddingBag配置规划的性能优化

2025-07-04 14:04:33作者:宣聪麟

问题背景

在PyTorch的推荐系统库TorchRec中,当使用EmbeddingShardingPlanner进行分布式规划时,如果EmbeddingBagConfig的数量超过500个,系统会遇到NCCL通信超时的问题。这个问题在8个GPU的分布式环境下尤为明显,规划过程耗时超过900秒,远超出NCCL默认的超时时间。

技术细节分析

1. 问题复现环境

测试环境使用了以下配置:

  • TorchRec 0.8.0 + CUDA 12.1
  • PyTorch 2.4.0 + CUDA 12.1
  • FBGEMM-GPU 0.8.0 + CUDA 12.1
  • 8个GPU的分布式设置

测试脚本创建了500个随机配置的EmbeddingBag表,每个表的嵌入维度在4到16之间随机变化,嵌入数量在2到1000之间随机变化。

2. 问题核心

collective_plan方法的执行时间随着EmbeddingBagConfig数量的增加呈非线性增长。当配置数量达到500时,规划时间超过15分钟,导致NCCL通信超时。即使将NCCL超时时间延长到1小时,规划过程仍然耗时904秒。

性能瓶颈分析

1. 规划算法复杂度

EmbeddingShardingPlanner使用的启发式规划算法在最坏情况下可能具有较高的时间复杂度。随着表数量的增加,规划空间呈指数级增长,导致计算时间急剧上升。

2. 分布式通信开销

collective_plan方法需要在所有GPU之间进行协调和通信,随着规划复杂度的增加,通信次数和通信量也随之增加,这在分布式环境下会放大性能问题。

3. 内存压力

HeuristicalStorageReservation尝试保留70%的GPU内存,对于大规模配置,内存计算和优化本身也会消耗大量时间。

优化建议

1. 分批规划策略

可以将500个表分成若干批次进行规划,每批处理一定数量的表。这种方法虽然可能无法达到全局最优,但可以显著减少单次规划的时间。

2. 缓存规划结果

对于相对静态的表配置,可以考虑缓存规划结果,避免每次运行时都重新规划。

3. 优化规划算法

可以考虑实现更高效的规划算法,如基于动态规划或贪心算法的近似解法,在可接受的时间内获得足够好的解。

4. 调整NCCL参数

虽然这不是根本解决方案,但可以调整NCCL的超时参数和通信参数以适应长时间运行的规划过程。

实际应用建议

对于生产环境中需要处理大规模EmbeddingBag配置的情况,建议:

  1. 评估是否所有表都需要独立配置,有些表是否可以共享配置
  2. 考虑使用更粗粒度的分片策略
  3. 在开发环境中预先计算规划结果
  4. 监控规划时间随表数量增长的趋势,提前预估资源需求

结论

TorchRec在大规模EmbeddingBag配置下的规划性能问题反映了分布式推荐系统面临的典型挑战。通过算法优化、系统调优和合理的架构设计,可以在保持功能完整性的同时显著提升性能。未来版本的TorchRec可能会针对这一问题提供更优化的内置解决方案。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8