在Llama Index项目中实现AgentWorkflow作为工具的方法
在Llama Index项目中,开发者经常需要将一个AgentWorkflow或Workflow作为工具集成到另一个AgentWorkflow中。这种架构设计能够实现复杂任务的模块化分解,提高代码复用性和系统灵活性。
核心实现原理
要实现这种嵌套式的Workflow调用,关键在于将目标Workflow封装为一个FunctionTool。FunctionTool是Llama Index提供的一种机制,它允许将任何可调用对象转换为Agent可以使用的工具。这种封装方式保持了Workflow的独立性,同时使其能够被其他AgentWorkflow调用。
具体实现步骤
-
定义Workflow函数:首先需要将Workflow逻辑封装为一个标准的Python函数。这个函数应该接收必要的参数,并返回处理结果。
-
创建FunctionTool实例:使用Llama Index提供的FunctionTool类,将上述函数包装成工具。需要为工具指定名称和描述,这些元信息将帮助Agent理解何时使用这个工具。
-
集成到目标AgentWorkflow:将创建好的FunctionTool实例添加到目标AgentWorkflow的工具列表中。这样,Agent在执行过程中就可以根据需要调用这个工具。
流式处理实现
当涉及到流式处理时,可以通过Workflow的上下文(Context)对象来传递流数据。Llama Index的AgentWorkflow支持通过stream_events()方法实现事件流的处理。开发者可以监听这些事件流,实时处理LLM的输出或其他中间结果。
最佳实践建议
在实际应用中,建议为每个被封装为工具的Workflow编写清晰的文档说明,包括输入参数、返回值和使用场景。同时,考虑到性能因素,应避免创建过深的Workflow嵌套层次,一般建议不超过3层。
对于复杂的业务逻辑,可以考虑将Workflow拆分为多个独立的工具,每个工具专注于单一职责,然后通过AgentWorkflow来协调这些工具的执行顺序和数据流转。
通过这种设计模式,Llama Index项目能够构建出既灵活又强大的AI应用架构,满足各种复杂业务场景的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00