Swift多轮对话训练中控制历史记录loss计算的技术解析
2025-05-31 03:46:47作者:邓越浪Henry
在基于modelscope/swift框架进行多轮对话模型训练时,开发者经常需要精细控制损失函数的计算范围。特别是在处理对话历史记录时,如何避免模型对assistant(助手)生成的历史回复进行重复优化,是一个具有实际意义的技术问题。
多轮对话训练的核心挑战
多轮对话场景下,训练数据通常包含完整的对话历史,包括用户输入(user)和模型回复(assistant)的交替记录。传统训练方式会对所有token计算损失函数,这会导致两个主要问题:
- 对assistant历史回复的重复优化可能干扰模型对新回复的学习
- 计算资源浪费在对已生成内容的重复训练上
Swift的解决方案:last_round参数
Swift框架提供了--loss_scale last_round这一关键参数,专门用于控制多轮对话训练时的损失计算范围。该参数的运作机制是:
- 仅对最后一轮对话(即当前需要生成的回复)计算损失
- 自动忽略历史记录中所有assistant部分的loss计算
- 保留对用户输入部分的学习
这种设计既保证了模型能从完整对话上下文中学习,又避免了不必要的计算开销。
技术实现原理
在底层实现上,该功能通过以下方式工作:
- 对话数据预处理阶段自动标记不同角色的文本段
- 损失函数计算时根据参数设置过滤特定角色的文本段
- 梯度回传时仅针对选定的文本段更新模型参数
实际应用建议
开发者在使用该功能时应注意:
- 适用于大多数生成式对话微调场景
- 当需要特别强化对话连贯性时,可考虑使用完整loss计算
- 批量训练时注意不同样本的对话轮数可能不同
这一功能显著提升了多轮对话模型训练的效率和针对性,是Swift框架对话训练优化的重要组成部分。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1