MLFeatureSelection 使用教程
2025-04-21 10:56:05作者:管翌锬
1. 项目介绍
MLFeatureSelection 是一个基于机器学习算法和评估方法特性的选择器。它提供了多样性、灵活性和易用性,支持多种特性选择方法,并且未来会继续增加更多的功能。
2. 项目快速启动
首先,确保您的环境中已经安装了 Python。然后,使用 pip 安装 MLFeatureSelection:
pip3 install MLFeatureSelection
以下是使用 MLFeatureSelection 的基本步骤:
示例:序列选择
from MLFeatureSelection import sequence_selection
from sklearn.linear_model import LogisticRegression
# 初始化选择器
sf = sequence_selection.Select(Sequence=True, Random=True, Cross=False)
# 导入数据集和标签
sf.ImportDF(df, label='Label')
# 导入损失函数
sf.ImportLossFunction(lossfunction, direction='ascend')
# 初始化不可训练的特征
sf.InitialNonTrainableFeatures(notusable)
# 初始化特征
sf.InitialFeatures(initialfeatures)
# 生成选择特征
sf.GenerateCol()
# 设置每轮选择的特征数量
sf.SetFeatureEachRound(50, False)
# 设置机器学习算法
sf.clf = LogisticRegression()
# 设置日志文件
sf.SetLogFile('record.log')
# 运行选择过程
validate = sf.run(validate)
示例:重要性选择
from MLFeatureSelection import importance_selection
import xgboost as xgb
# 初始化选择器
sf = importance_selection.Select()
# 导入数据集和标签
sf.ImportDF(df, label='Label')
# 导入损失函数
sf.ImportLossFunction(lossfunction, direction='ascend')
# 初始化特征
sf.InitialFeatures()
# 设置移除模式
sf.SelectRemoveMode(batch=2)
# 设置机器学习算法
sf.clf = xgb.XGBClassifier()
# 设置日志文件
sf.SetLogFile('record.log')
# 运行选择过程
validate = sf.run(validate)
示例:相关性选择
from MLFeatureSelection import coherence_selection
import xgboost as xgb
# 初始化选择器
sf = coherence_selection.Select()
# 导入数据集和标签
sf.ImportDF(df, label='Label')
# 导入损失函数
sf.ImportLossFunction(lossfunction, direction='ascend')
# 初始化特征
sf.InitialFeatures()
# 设置移除模式
sf.SelectRemoveMode(batch=2)
# 设置机器学习算法
sf.clf = xgb.XGBClassifier()
# 设置日志文件
sf.SetLogFile('record.log')
# 运行选择过程
validate = sf.run(validate)
3. 应用案例和最佳实践
- 案例一:使用 5 折验证和准确率评估的泰坦尼克号数据集。
- 案例二:JData 2018 预测购买时间竞赛中的 S1 和 S2 分数改进。
- 案例三:IJCAI 2018 CTR 预测。
4. 典型生态项目
MLFeatureSelection 可以与多种机器学习框架和库一起使用,例如 scikit-learn、xgboost 等。它支持自定义验证方法和损失函数,可以轻松集成到现有的数据科学工作流程中。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript042GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX00PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython08
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手nomic-embed-text-v1,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手paecter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手llama-3-8b-bnb-4bit,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ClinicalBERT,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手yolov4_ms,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手depth_anything_vitl14,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手RMBG-1.4,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手Counterfeit-V2.5,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手OrangeMixs,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

React Native鸿蒙化仓库
C++
138
221

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
98
154

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
656
440

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
701
97

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
361
353

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

端云一体化的微信小程序项目
JavaScript
120
0

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
513
42