AutoAWQ项目中的量化模型输出乱码问题分析与解决方案
2025-07-04 21:59:23作者:冯爽妲Honey
问题背景
在使用AutoAWQ项目对Qwen2.5-1.5B-Instruct模型进行4-bit量化后,部分用户遇到了模型输出乱码的问题。这个问题在使用vLLM推理框架时尤为明显,而直接使用autoawq库则能正常输出。经过深入分析,发现这与量化后模型权重保存方式的变化有关。
技术分析
权重保存机制的变化
在AutoAWQ 0.2.7版本后,对于使用共享词嵌入(tied word embeddings)的模型,量化后会保存lm_head权重而非model.embed_tokens权重。这种变化导致了与某些推理框架的兼容性问题:
- vLLM框架:当检测到tied_word_embeddings时,会跳过lm_head的加载,导致词嵌入和语言模型头都被置零,从而产生乱码输出
- llama.cpp:在转换过程中会显式跳过lm_head,并使用输入token嵌入作为输出
权重保存对比
| 模型/工具版本 | 保存model.embed_tokens | 保存lm_head |
|---|---|---|
| 原始Qwen2.5模型 | 是 | 否 |
| transformers 4.46.3 | 是 | 否 |
| autoawq 0.2.6 | 是 | 是 |
| autoawq 0.2.7+ | 否 | 是 |
解决方案
临时解决方案
对于已经量化的模型,可以通过以下Python脚本修复权重命名问题:
import os
import safetensors
quant_path = "量化模型路径"
tensors = {}
with safetensors.safe_open(
os.path.join(quant_path, "model.safetensors"), framework="pt", device="cpu"
) as f:
for k in f.keys():
nk = "model.embed_tokens.weight" if k == "lm_head.weight" else k
tensors[nk] = f.get_tensor(k)
os.rename(
os.path.join(quant_path, "model.safetensors"),
os.path.join(quant_path, "model.safetensors.bak"),
)
safetensors.torch.save_file(tensors, os.path.join(quant_path, "model.safetensors"))
长期解决方案
建议等待AutoAWQ官方修复此问题。开发者正在与Hugging Face团队协作,寻求在transformers层面解决这个兼容性问题。
技术建议
- 对于Qwen系列模型的量化,建议暂时使用AutoAWQ 0.2.6版本
- 在使用vLLM等推理框架前,检查量化模型的权重命名是否符合预期
- 关注AutoAWQ项目的更新,及时获取官方修复版本
总结
模型量化过程中的权重保存方式变化可能导致与推理框架的兼容性问题。理解模型架构和框架加载机制对于解决这类问题至关重要。建议开发者在量化模型后,先在简单场景下测试模型输出,确认无误后再投入生产环境使用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19