AutoAWQ项目中的量化模型输出乱码问题分析与解决方案
2025-07-04 21:59:23作者:冯爽妲Honey
问题背景
在使用AutoAWQ项目对Qwen2.5-1.5B-Instruct模型进行4-bit量化后,部分用户遇到了模型输出乱码的问题。这个问题在使用vLLM推理框架时尤为明显,而直接使用autoawq库则能正常输出。经过深入分析,发现这与量化后模型权重保存方式的变化有关。
技术分析
权重保存机制的变化
在AutoAWQ 0.2.7版本后,对于使用共享词嵌入(tied word embeddings)的模型,量化后会保存lm_head权重而非model.embed_tokens权重。这种变化导致了与某些推理框架的兼容性问题:
- vLLM框架:当检测到tied_word_embeddings时,会跳过lm_head的加载,导致词嵌入和语言模型头都被置零,从而产生乱码输出
- llama.cpp:在转换过程中会显式跳过lm_head,并使用输入token嵌入作为输出
权重保存对比
| 模型/工具版本 | 保存model.embed_tokens | 保存lm_head |
|---|---|---|
| 原始Qwen2.5模型 | 是 | 否 |
| transformers 4.46.3 | 是 | 否 |
| autoawq 0.2.6 | 是 | 是 |
| autoawq 0.2.7+ | 否 | 是 |
解决方案
临时解决方案
对于已经量化的模型,可以通过以下Python脚本修复权重命名问题:
import os
import safetensors
quant_path = "量化模型路径"
tensors = {}
with safetensors.safe_open(
os.path.join(quant_path, "model.safetensors"), framework="pt", device="cpu"
) as f:
for k in f.keys():
nk = "model.embed_tokens.weight" if k == "lm_head.weight" else k
tensors[nk] = f.get_tensor(k)
os.rename(
os.path.join(quant_path, "model.safetensors"),
os.path.join(quant_path, "model.safetensors.bak"),
)
safetensors.torch.save_file(tensors, os.path.join(quant_path, "model.safetensors"))
长期解决方案
建议等待AutoAWQ官方修复此问题。开发者正在与Hugging Face团队协作,寻求在transformers层面解决这个兼容性问题。
技术建议
- 对于Qwen系列模型的量化,建议暂时使用AutoAWQ 0.2.6版本
- 在使用vLLM等推理框架前,检查量化模型的权重命名是否符合预期
- 关注AutoAWQ项目的更新,及时获取官方修复版本
总结
模型量化过程中的权重保存方式变化可能导致与推理框架的兼容性问题。理解模型架构和框架加载机制对于解决这类问题至关重要。建议开发者在量化模型后,先在简单场景下测试模型输出,确认无误后再投入生产环境使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355