AutoAWQ项目中的量化模型输出乱码问题分析与解决方案
2025-07-04 07:10:18作者:冯爽妲Honey
问题背景
在使用AutoAWQ项目对Qwen2.5-1.5B-Instruct模型进行4-bit量化后,部分用户遇到了模型输出乱码的问题。这个问题在使用vLLM推理框架时尤为明显,而直接使用autoawq库则能正常输出。经过深入分析,发现这与量化后模型权重保存方式的变化有关。
技术分析
权重保存机制的变化
在AutoAWQ 0.2.7版本后,对于使用共享词嵌入(tied word embeddings)的模型,量化后会保存lm_head权重而非model.embed_tokens权重。这种变化导致了与某些推理框架的兼容性问题:
- vLLM框架:当检测到tied_word_embeddings时,会跳过lm_head的加载,导致词嵌入和语言模型头都被置零,从而产生乱码输出
- llama.cpp:在转换过程中会显式跳过lm_head,并使用输入token嵌入作为输出
权重保存对比
模型/工具版本 | 保存model.embed_tokens | 保存lm_head |
---|---|---|
原始Qwen2.5模型 | 是 | 否 |
transformers 4.46.3 | 是 | 否 |
autoawq 0.2.6 | 是 | 是 |
autoawq 0.2.7+ | 否 | 是 |
解决方案
临时解决方案
对于已经量化的模型,可以通过以下Python脚本修复权重命名问题:
import os
import safetensors
quant_path = "量化模型路径"
tensors = {}
with safetensors.safe_open(
os.path.join(quant_path, "model.safetensors"), framework="pt", device="cpu"
) as f:
for k in f.keys():
nk = "model.embed_tokens.weight" if k == "lm_head.weight" else k
tensors[nk] = f.get_tensor(k)
os.rename(
os.path.join(quant_path, "model.safetensors"),
os.path.join(quant_path, "model.safetensors.bak"),
)
safetensors.torch.save_file(tensors, os.path.join(quant_path, "model.safetensors"))
长期解决方案
建议等待AutoAWQ官方修复此问题。开发者正在与Hugging Face团队协作,寻求在transformers层面解决这个兼容性问题。
技术建议
- 对于Qwen系列模型的量化,建议暂时使用AutoAWQ 0.2.6版本
- 在使用vLLM等推理框架前,检查量化模型的权重命名是否符合预期
- 关注AutoAWQ项目的更新,及时获取官方修复版本
总结
模型量化过程中的权重保存方式变化可能导致与推理框架的兼容性问题。理解模型架构和框架加载机制对于解决这类问题至关重要。建议开发者在量化模型后,先在简单场景下测试模型输出,确认无误后再投入生产环境使用。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133