PFL-Non-IID项目中Cifar100数据集训练准确率问题分析
问题背景
在使用PFL-Non-IID项目进行联邦学习实验时,研究人员发现了一个值得关注的现象:当使用resnet18模型在Cifar100数据集上进行训练时,即使将客户端数量设置为1(即模拟集中式训练场景),采用FedAvg或Local算法得到的测试准确率也难以超过50%,有时甚至低于40%。这与直接使用原始Cifar100数据集进行集中式训练时能达到65%左右的准确率形成了鲜明对比。
问题分析
数据集划分差异
经过深入分析,发现问题的根源在于数据集的划分方式存在显著差异:
-
原始数据集划分:Cifar100原始数据集中,训练集与测试集的比例为5:1,这意味着有更多的数据可用于模型训练。
-
项目默认划分:PFL-Non-IID项目中默认将训练集和测试集混合后重新划分为3:1的比例。这种划分方式导致:
- 训练数据量相对减少
- 测试数据量相对增加
- 整体数据分布可能发生变化
训练数据量的重要性
在机器学习领域,训练数据量对模型性能有着决定性影响。当训练数据量减少时,模型更容易出现过拟合现象,表现为:
- 训练准确率较高但测试准确率较低
- 模型泛化能力下降
- 难以学习到数据中的普遍规律
项目设计理念
值得注意的是,PFL-Non-IID项目的设计遵循了特定的理念:
- 尽可能不进行超参数调优
- 在各种任务上尽量使用同一套超参数
- 保持实验条件的一致性以便于算法比较
这种设计理念虽然有利于算法评估的公平性,但在特定数据集上可能无法获得最优性能。
解决方案建议
对于希望在PFL-Non-IID框架下进行集中式训练对比实验的研究人员,建议采取以下措施:
-
修改数据划分比例:调整代码中的数据集划分逻辑,使其与原始数据集的5:1比例保持一致。
-
保持数据分布一致性:确保训练集和测试集的分布特征与原始数据集相同。
-
谨慎调整超参数:虽然项目提倡不调参,但在特定研究需求下可以适当调整学习率、批量大小等参数。
-
验证数据预处理流程:检查数据增强等预处理步骤是否与集中式训练设置一致。
总结
这个案例提醒我们,在进行联邦学习与集中式学习的对比实验时,必须严格控制实验条件的一致性,特别是数据集的划分方式和数据量。PFL-Non-IID项目的设计更侧重于算法间的公平比较,而非追求每个数据集上的最优性能。研究人员应根据具体需求灵活调整实验设置,同时理解框架设计背后的理念和限制。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00