PFL-Non-IID项目中Cifar100数据集训练准确率问题分析
问题背景
在使用PFL-Non-IID项目进行联邦学习实验时,研究人员发现了一个值得关注的现象:当使用resnet18模型在Cifar100数据集上进行训练时,即使将客户端数量设置为1(即模拟集中式训练场景),采用FedAvg或Local算法得到的测试准确率也难以超过50%,有时甚至低于40%。这与直接使用原始Cifar100数据集进行集中式训练时能达到65%左右的准确率形成了鲜明对比。
问题分析
数据集划分差异
经过深入分析,发现问题的根源在于数据集的划分方式存在显著差异:
-
原始数据集划分:Cifar100原始数据集中,训练集与测试集的比例为5:1,这意味着有更多的数据可用于模型训练。
-
项目默认划分:PFL-Non-IID项目中默认将训练集和测试集混合后重新划分为3:1的比例。这种划分方式导致:
- 训练数据量相对减少
- 测试数据量相对增加
- 整体数据分布可能发生变化
训练数据量的重要性
在机器学习领域,训练数据量对模型性能有着决定性影响。当训练数据量减少时,模型更容易出现过拟合现象,表现为:
- 训练准确率较高但测试准确率较低
- 模型泛化能力下降
- 难以学习到数据中的普遍规律
项目设计理念
值得注意的是,PFL-Non-IID项目的设计遵循了特定的理念:
- 尽可能不进行超参数调优
- 在各种任务上尽量使用同一套超参数
- 保持实验条件的一致性以便于算法比较
这种设计理念虽然有利于算法评估的公平性,但在特定数据集上可能无法获得最优性能。
解决方案建议
对于希望在PFL-Non-IID框架下进行集中式训练对比实验的研究人员,建议采取以下措施:
-
修改数据划分比例:调整代码中的数据集划分逻辑,使其与原始数据集的5:1比例保持一致。
-
保持数据分布一致性:确保训练集和测试集的分布特征与原始数据集相同。
-
谨慎调整超参数:虽然项目提倡不调参,但在特定研究需求下可以适当调整学习率、批量大小等参数。
-
验证数据预处理流程:检查数据增强等预处理步骤是否与集中式训练设置一致。
总结
这个案例提醒我们,在进行联邦学习与集中式学习的对比实验时,必须严格控制实验条件的一致性,特别是数据集的划分方式和数据量。PFL-Non-IID项目的设计更侧重于算法间的公平比较,而非追求每个数据集上的最优性能。研究人员应根据具体需求灵活调整实验设置,同时理解框架设计背后的理念和限制。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00