SketchModeling开源项目使用指南
2024-09-23 12:38:18作者:仰钰奇
本指南旨在帮助您了解并使用SketchModeling
项目,这是一个基于Python和C++的开源工具,用于从线绘制草图重建3D形状。以下是项目的核心要素概览,包括目录结构、启动文件以及配置文件的详细介绍。
1. 项目目录结构及介绍
项目的主要目录结构如下:
SketchModeling/
├── Network # 网络部分,包含深度学习模型的实现
│ ├── README.md # 网络部分的具体说明
│ └── ... # 相关Python代码和配置
├── Fusion # 合成部分,负责将预测结果融合成3D模型
│ ├── README.md # 程序细节,编译和运行指导
│ └── ... # C++源码与库文件
├── LICENSE # 开源许可证文件,遵循GPL-3.0协议
├── COPYING # 另一个可能的许可证或版权信息文件
└── README.md # 主要的项目介绍文档
- Network 目录包含了使用TensorFlow框架训练和测试深度神经网络的Python代码,目的是从输入的草图图像中预测深度和法线映射。
- Fusion 目录下是C++代码,这部分负责将通过神经网络得到的深度和法线图合成最终的3D形状,需要Visual Studio环境进行编译。
LICENSE
和COPYING
文件定义了项目的使用许可,主要为GPL-3.0协议。
2. 项目的启动文件介绍
网络部分启动
在Network
目录下,尽管没有明确指出哪个是启动文件,通常涉及到深度学习模型的训练或预测,主要由脚本或Jupyter Notebook形式提供。您需查找名为 train.py
, predict.py
或类似的文件作为入口点,根据其内的指示开始模型的学习或应用过程。
合成部分启动
对于C++的Fusion
部分,启动文件可能是在解决方案或项目文件中指定的可执行程序名称,如未明示,寻找带有main函数的.cpp
文件,并确保先通过Visual Studio或其他兼容的IDE编译整个项目。
3. 项目的配置文件介绍
配置文件通常位于各个功能模块内部。在Network
目录中,配置项可能以.json
或直接在Python脚本中的变量形式存在,控制着模型的架构、学习率、批次大小等。而在Fusion
部分,若涉及外部配置,可能是 .ini
或特定的 .cfg
文件,它们定义了融合过程中使用的参数,如阈值、输出格式等。
为了正确配置和运行项目,请仔细阅读每个子目录下的README.md
文件,它们提供了详细的设置和运行步骤。确保您的开发环境中已安装必要的依赖,如TensorFlow、NumPy等(对Python部分),以及正确的C++编译器(对C++部分)。
在着手操作前,请务必确认已遵守GPL-3.0开源许可证的要求,并在学术或商业应用中适当引用原作者的工作。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
466

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
133
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4