Harvester项目升级过程中节点卡在Pre-drained状态的技术分析
问题背景
在Harvester虚拟化管理平台的版本升级过程中,用户报告了一个关键问题:当从v1.4.1版本升级到v1.4.2-rc1版本时,升级流程会在第一个节点卡在"Pre-drained"状态。这一问题特别出现在三节点集群环境中,且这些节点采用了操作系统盘和数据盘分离的存储配置方式。
问题现象
升级过程中,系统显示第一个节点长时间停留在"Pre-drained"阶段,无法继续后续的升级流程。同时,集群中多个关键Pod(包括rancher、harvester-webhook、virt-api和virt-controller等)处于Pending状态,导致整个系统功能受限。
根本原因分析
经过深入调查,发现问题的核心在于KubeVirt组件的行为变更:
-
KubeVirt版本差异:v1.4.1使用的是KubeVirt v1.2.2,而v1.4.2-rc1升级到了KubeVirt v1.3.1。新版本引入了对Pod部署位置的严格限制。
-
节点亲和性变更:KubeVirt v1.3.1为virt-api和virt-controller部署添加了严格的节点亲和性规则,要求这些Pod必须运行在控制平面节点上。具体表现为:
- 必须运行在带有node-role.kubernetes.io/control-plane或node-role.kubernetes.io/master标签的节点上
- 优先选择没有node-role.kubernetes.io/worker标签的节点
-
Pod中断预算(PDB)冲突:当尝试排空第一个控制平面节点时,系统无法安全地驱逐virt-api和virt-controller Pod,因为这会导致违反它们的Pod中断预算策略。
-
多节点集群的特殊性:在配置为单控制平面+多工作节点的集群环境中,这一问题尤为突出,因为virt-api和virt-controller Pod只能运行在唯一的控制平面节点上。
解决方案
开发团队提出了两种解决方案:
-
临时解决方案:手动删除harvester-system命名空间中的virt-api-pdb和virt-controller-pdb Pod中断预算对象,允许升级流程继续。但这只是一个应急措施,不推荐在生产环境中使用。
-
永久解决方案:通过修改Harvester的Helm chart,在KubeVirt自定义资源中显式设置.spec.infra.nodePlacement: {}配置项。这一变更可以恢复KubeVirt v1.2.2版本的行为,取消对Pod部署位置的限制。
验证结果
该修复已在v1.4.2-rc2版本中得到验证,确认解决了升级过程中节点卡住的问题。测试环境采用三节点物理机集群,操作系统盘和数据盘分离的配置,升级流程顺利完成,所有节点都能正确完成升级过程。
技术启示
这一案例展示了基础设施软件升级过程中可能遇到的兼容性问题,特别是当底层组件(如KubeVirt)的行为发生变更时。对于集群管理软件而言,需要特别注意:
- 组件版本升级可能引入不兼容的默认行为变更
- 多节点集群中资源调度和Pod分布的策略需要全面考虑
- 升级流程必须能够处理各种集群配置场景
- 为关键系统组件提供配置灵活性非常重要
Harvester团队通过这一问题的解决,进一步完善了产品的升级健壮性,为后续版本的大规模部署提供了更好的保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00