Matter项目中的chip-tool工具PAF功能内存泄漏问题分析
问题概述
在Matter智能家居开源项目中,chip-tool工具作为调试和测试的重要组件,被发现存在内存泄漏问题。具体表现为当使用WiFi PAF(Passive-Active Framework)功能进行设备配对时,系统会报告内存泄漏错误。这个问题在Raspberry Pi Linux平台上通过Address Sanitizer(asan)工具检测出来。
技术背景
PAF是Matter项目中用于设备发现和配对的机制,它通过DBus接口与wpa_supplicant进行交互。在实现过程中,chip-tool会注册信号处理器来监听特定事件,如发现结果(nandiscovery-result)和接收数据(nanreceive)。这些信号处理器通过glib库的g_signal_connect函数进行注册。
问题现象
当运行chip-tool进行PAF配对时,系统会报告两处内存泄漏:
- 378字节的内存泄漏,分布在21个对象中
- 360字节的内存泄漏,分布在20个对象中
从调用栈分析,这些内存分配发生在ConnectivityManagerImpl.cpp文件的信号处理器注册过程中。同时,日志中还会频繁出现"WiFi-PAF: DiscoveryResult, reentrance"的警告信息。
根本原因
经过分析,内存泄漏的主要原因是:
- 在ConnectivityManagerImpl.cpp中注册的DBus信号处理器没有在适当的时候被释放
- 当mWpaSupplicant.iface接口被使用时,通过g_signal_connect注册的回调函数及其相关资源没有被正确清理
具体来说,问题出现在以下代码段:
g_signal_connect(mWpaSupplicant.iface, "nandiscovery-result",
G_CALLBACK(+[](WpaSupplicant1Interface * proxy, GVariant * obj, ConnectivityManagerImpl * self) {
return self->OnDiscoveryResult(obj);
}),
this);
g_signal_connect(mWpaSupplicant.iface, "nanreceive",
G_CALLBACK(+[](WpaSupplicant1Interface * proxy, GVariant * obj, ConnectivityManagerImpl * self) {
return self->OnNanReceive(obj);
}),
this);
解决方案
要解决这个问题,需要在适当的时候调用g_signal_handler_disconnect来断开信号连接并释放相关资源。具体措施包括:
- 在ConnectivityManagerImpl类中添加成员变量来保存信号处理器ID
- 在类析构函数或适当的清理函数中调用g_signal_handler_disconnect
- 确保在接口不再使用时清理所有相关资源
影响评估
这个内存泄漏问题虽然不会立即导致功能失效,但长期运行可能会导致:
- 内存资源逐渐耗尽
- 系统性能下降
- 在资源受限的设备上可能引发更严重的问题
最佳实践建议
对于类似DBus接口和信号处理器的使用,建议:
- 遵循RAII原则,在构造函数中注册信号处理器,在析构函数中释放
- 使用智能指针管理相关资源
- 在代码中添加资源清理的日志,便于调试
- 在单元测试中加入内存泄漏检测
总结
内存管理是C++项目中的常见挑战,特别是在涉及跨进程通信和回调机制时。Matter项目中的这个案例提醒我们,在使用glib和DBus等框架时,需要特别注意资源生命周期管理。通过合理的资源释放机制和严格的代码审查,可以有效避免类似问题的发生。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00