Matter项目中的chip-tool工具PAF功能内存泄漏问题分析
问题概述
在Matter智能家居开源项目中,chip-tool工具作为调试和测试的重要组件,被发现存在内存泄漏问题。具体表现为当使用WiFi PAF(Passive-Active Framework)功能进行设备配对时,系统会报告内存泄漏错误。这个问题在Raspberry Pi Linux平台上通过Address Sanitizer(asan)工具检测出来。
技术背景
PAF是Matter项目中用于设备发现和配对的机制,它通过DBus接口与wpa_supplicant进行交互。在实现过程中,chip-tool会注册信号处理器来监听特定事件,如发现结果(nandiscovery-result)和接收数据(nanreceive)。这些信号处理器通过glib库的g_signal_connect函数进行注册。
问题现象
当运行chip-tool进行PAF配对时,系统会报告两处内存泄漏:
- 378字节的内存泄漏,分布在21个对象中
- 360字节的内存泄漏,分布在20个对象中
从调用栈分析,这些内存分配发生在ConnectivityManagerImpl.cpp文件的信号处理器注册过程中。同时,日志中还会频繁出现"WiFi-PAF: DiscoveryResult, reentrance"的警告信息。
根本原因
经过分析,内存泄漏的主要原因是:
- 在ConnectivityManagerImpl.cpp中注册的DBus信号处理器没有在适当的时候被释放
- 当mWpaSupplicant.iface接口被使用时,通过g_signal_connect注册的回调函数及其相关资源没有被正确清理
具体来说,问题出现在以下代码段:
g_signal_connect(mWpaSupplicant.iface, "nandiscovery-result",
G_CALLBACK(+[](WpaSupplicant1Interface * proxy, GVariant * obj, ConnectivityManagerImpl * self) {
return self->OnDiscoveryResult(obj);
}),
this);
g_signal_connect(mWpaSupplicant.iface, "nanreceive",
G_CALLBACK(+[](WpaSupplicant1Interface * proxy, GVariant * obj, ConnectivityManagerImpl * self) {
return self->OnNanReceive(obj);
}),
this);
解决方案
要解决这个问题,需要在适当的时候调用g_signal_handler_disconnect来断开信号连接并释放相关资源。具体措施包括:
- 在ConnectivityManagerImpl类中添加成员变量来保存信号处理器ID
- 在类析构函数或适当的清理函数中调用g_signal_handler_disconnect
- 确保在接口不再使用时清理所有相关资源
影响评估
这个内存泄漏问题虽然不会立即导致功能失效,但长期运行可能会导致:
- 内存资源逐渐耗尽
- 系统性能下降
- 在资源受限的设备上可能引发更严重的问题
最佳实践建议
对于类似DBus接口和信号处理器的使用,建议:
- 遵循RAII原则,在构造函数中注册信号处理器,在析构函数中释放
- 使用智能指针管理相关资源
- 在代码中添加资源清理的日志,便于调试
- 在单元测试中加入内存泄漏检测
总结
内存管理是C++项目中的常见挑战,特别是在涉及跨进程通信和回调机制时。Matter项目中的这个案例提醒我们,在使用glib和DBus等框架时,需要特别注意资源生命周期管理。通过合理的资源释放机制和严格的代码审查,可以有效避免类似问题的发生。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00