Agentscope项目中使用post_api_chat调用本地大模型API的实践指南
在Agentscope项目中,开发者可以通过post_api_chat方式调用本地部署的大语言模型(如Qwen或GLM3)来构建对话系统。然而在实际操作中,可能会遇到API调用失败的问题。本文将深入分析问题原因并提供完整的解决方案。
问题现象分析
当开发者按照常规方式配置model_configs.json文件并启动服务时,系统会返回404错误,提示"Failed to call the model with {'detail': 'Not Found'}"。这种错误通常表明API端点路径不正确或服务未正确启动。
根本原因
经过分析,问题主要源于以下两个方面:
-
API服务启动方式不当:直接使用本地LLM包中的API服务程序可能无法与Agentscope的post_api_chat接口规范兼容。
-
配置细节缺失:在model_configs.json中缺少必要的API端点路径细节。
解决方案
正确的API服务启动方式
推荐使用Agentscope项目提供的专用脚本启动API服务:
./scripts/flask_transformers/setup_hf_service.py
这个脚本专门为Agentscope项目优化,能够确保API服务与post_api_chat接口规范完全兼容。
配置优化建议
在model_configs.json中,建议添加更完整的API端点配置:
{
"model_type": "post_api_chat",
"config_name": "glm3_config",
"api_url": "http://127.0.0.1:8000/v1/chat/completions",
"headers": {
"Content-Type": "application/json"
},
"json_args": {
"temperature": 0.7,
"max_tokens": 1024
}
}
实现流式输出的考虑
目前post_api_chat默认不支持流式输出,这是需要注意的一个限制。如果需要流式输出功能,可以考虑以下方案:
- 检查API服务端是否支持流式输出
- 在Agentscope中自定义Wrapper处理流式响应
- 考虑使用WebSocket协议替代HTTP协议
最佳实践建议
-
服务隔离:将API服务与Agentscope应用部署在不同的容器中,便于管理和扩展。
-
健康检查:在应用启动时添加API服务健康检查机制。
-
超时设置:在配置中添加合理的超时参数,避免长时间等待。
-
日志记录:完善API调用日志,便于问题排查。
通过以上方案,开发者可以顺利地在Agentscope项目中集成本地大语言模型,构建稳定可靠的对话系统。对于更复杂的需求,建议参考Agentscope的官方文档和社区实践案例。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









