如何在Llama Index中获取查询响应的来源信息
2025-06-17 09:14:57作者:殷蕙予
Llama Index是一个强大的检索增强生成(RAG)框架,它能够帮助开发者高效地构建基于文档的问答系统。在实际应用中,我们不仅需要获取查询的答案,还需要了解这些答案来源于哪些文档片段,这对于验证答案的可信度和追溯信息来源至关重要。
获取查询来源的基本方法
在Llama Index中,当我们执行查询操作时,系统会返回一个Response对象,这个对象包含了丰富的元数据信息,其中就包括答案的来源节点(source nodes)。这些来源节点代表了从文档中检索到的相关片段。
from llama_index.core import VectorStoreIndex, Document
# 假设document_objects是已经加载的文档列表
index = VectorStoreIndex.from_documents(document_objects)
query_engine = index.as_query_engine()
response = query_engine.query("你的查询问题")
解析响应中的来源信息
Response对象中的source_nodes属性包含了所有相关的来源节点,每个节点都提供了以下关键信息:
- 相关性分数(score): 表示该节点与查询问题的匹配程度
- 文本内容(text): 节点中包含的实际文本内容
- 元数据(metadata): 可能包含文档来源、创建时间等附加信息
# 获取所有来源节点
for node in response.source_nodes:
print(f"相关性分数: {node.score}")
print(f"文本内容: {node.text}")
print(f"元数据: {node.metadata}")
高级应用场景
在实际应用中,我们可以利用这些来源信息实现更复杂的功能:
- 答案验证: 通过检查多个来源节点是否支持相同的结论来提高答案的可信度
- 引用生成: 自动为生成的答案添加引用来源
- 结果排序: 根据相关性分数对结果进行排序,优先展示最相关的信息
- 可解释性: 向用户展示答案的依据,增强系统的透明度
最佳实践建议
- 在处理敏感或关键业务场景时,务必检查来源信息的可靠性
- 可以考虑设置分数阈值,只使用高于特定阈值的来源节点
- 对于元数据中的文档信息,可以建立更丰富的元数据体系,便于后续分析和追踪
- 在展示给最终用户时,可以考虑对来源信息进行适当的格式化处理
通过合理利用Llama Index提供的来源信息功能,开发者可以构建更加透明、可信的问答系统,这对于企业级应用和知识管理场景尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
372
React Native鸿蒙化仓库
JavaScript
301
347