FATE项目中Min-Max标准化公式的修正与解析
2025-06-05 14:19:38作者:翟江哲Frasier
标准化方法概述
在机器学习数据预处理环节,Min-Max标准化(也称为归一化)是一种常用的特征缩放技术。该方法通过线性变换将原始数据映射到指定范围内(通常是[0,1]或[-1,1]),使得不同量纲的特征具有可比性,同时加速模型收敛。
标准Min-Max公式
传统的Min-Max标准化公式为:
X' = (X - X_min) / (X_max - X_min) * (new_max - new_min) + new_min
其中:
- X是原始数据
- X_min和X_max分别是特征的最小值和最大值
- new_min和new_max是目标范围的最小值和最大值
FATE项目中的实现问题
在FATE项目的实现中,开发团队发现了一个公式计算顺序的错误。原始实现中使用了:
data_scaled = test_data_select * self._scale - (self._scale_min + self._range_min)
这个公式的问题在于括号的使用不当,导致计算结果与预期不符。正确的实现应该去掉括号:
data_scaled = test_data_select * self._scale - self._scale_min + self._range_min
错误的影响分析
这个看似微小的括号差异实际上会导致完全不同的计算结果。在原始实现中:
self._scale_min和self._range_min会先相加- 然后从乘积结果中减去这个和
而在正确实现中:
- 先计算乘积
- 减去
self._scale_min - 最后加上
self._range_min
这种差异在数据预处理阶段可能导致特征值范围偏离预期,进而影响后续的机器学习模型训练效果。
修正后的意义
修正后的公式能够:
- 准确实现Min-Max标准化的数学原理
- 确保特征值被正确映射到目标范围
- 保持与理论公式的一致性
- 避免因预处理错误导致的模型性能下降
标准化在联邦学习中的重要性
在FATE这样的联邦学习框架中,数据标准化尤为重要,因为:
- 不同参与方的数据可能具有不同的量纲和分布
- 标准化可以确保各方数据在同一尺度下进行联合建模
- 正确的标准化有助于保护数据隐私,避免因量纲差异泄露原始数据信息
最佳实践建议
在实现标准化方法时,建议:
- 严格对照数学公式进行编码实现
- 编写单元测试验证标准化结果是否符合预期
- 对于联邦学习场景,确保各参与方使用相同的标准化参数
- 记录标准化参数以便后续推理时使用相同的变换
这个问题的发现和修正体现了开源社区协作的优势,通过代码审查和用户反馈,能够不断完善框架的核心功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1