FATE项目中Min-Max标准化公式的修正与解析
2025-06-05 19:07:04作者:翟江哲Frasier
标准化方法概述
在机器学习数据预处理环节,Min-Max标准化(也称为归一化)是一种常用的特征缩放技术。该方法通过线性变换将原始数据映射到指定范围内(通常是[0,1]或[-1,1]),使得不同量纲的特征具有可比性,同时加速模型收敛。
标准Min-Max公式
传统的Min-Max标准化公式为:
X' = (X - X_min) / (X_max - X_min) * (new_max - new_min) + new_min
其中:
- X是原始数据
- X_min和X_max分别是特征的最小值和最大值
- new_min和new_max是目标范围的最小值和最大值
FATE项目中的实现问题
在FATE项目的实现中,开发团队发现了一个公式计算顺序的错误。原始实现中使用了:
data_scaled = test_data_select * self._scale - (self._scale_min + self._range_min)
这个公式的问题在于括号的使用不当,导致计算结果与预期不符。正确的实现应该去掉括号:
data_scaled = test_data_select * self._scale - self._scale_min + self._range_min
错误的影响分析
这个看似微小的括号差异实际上会导致完全不同的计算结果。在原始实现中:
self._scale_min
和self._range_min
会先相加- 然后从乘积结果中减去这个和
而在正确实现中:
- 先计算乘积
- 减去
self._scale_min
- 最后加上
self._range_min
这种差异在数据预处理阶段可能导致特征值范围偏离预期,进而影响后续的机器学习模型训练效果。
修正后的意义
修正后的公式能够:
- 准确实现Min-Max标准化的数学原理
- 确保特征值被正确映射到目标范围
- 保持与理论公式的一致性
- 避免因预处理错误导致的模型性能下降
标准化在联邦学习中的重要性
在FATE这样的联邦学习框架中,数据标准化尤为重要,因为:
- 不同参与方的数据可能具有不同的量纲和分布
- 标准化可以确保各方数据在同一尺度下进行联合建模
- 正确的标准化有助于保护数据隐私,避免因量纲差异泄露原始数据信息
最佳实践建议
在实现标准化方法时,建议:
- 严格对照数学公式进行编码实现
- 编写单元测试验证标准化结果是否符合预期
- 对于联邦学习场景,确保各参与方使用相同的标准化参数
- 记录标准化参数以便后续推理时使用相同的变换
这个问题的发现和修正体现了开源社区协作的优势,通过代码审查和用户反馈,能够不断完善框架的核心功能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133