FATE项目中Min-Max标准化公式的修正与解析
2025-06-05 14:19:38作者:翟江哲Frasier
标准化方法概述
在机器学习数据预处理环节,Min-Max标准化(也称为归一化)是一种常用的特征缩放技术。该方法通过线性变换将原始数据映射到指定范围内(通常是[0,1]或[-1,1]),使得不同量纲的特征具有可比性,同时加速模型收敛。
标准Min-Max公式
传统的Min-Max标准化公式为:
X' = (X - X_min) / (X_max - X_min) * (new_max - new_min) + new_min
其中:
- X是原始数据
- X_min和X_max分别是特征的最小值和最大值
- new_min和new_max是目标范围的最小值和最大值
FATE项目中的实现问题
在FATE项目的实现中,开发团队发现了一个公式计算顺序的错误。原始实现中使用了:
data_scaled = test_data_select * self._scale - (self._scale_min + self._range_min)
这个公式的问题在于括号的使用不当,导致计算结果与预期不符。正确的实现应该去掉括号:
data_scaled = test_data_select * self._scale - self._scale_min + self._range_min
错误的影响分析
这个看似微小的括号差异实际上会导致完全不同的计算结果。在原始实现中:
self._scale_min和self._range_min会先相加- 然后从乘积结果中减去这个和
而在正确实现中:
- 先计算乘积
- 减去
self._scale_min - 最后加上
self._range_min
这种差异在数据预处理阶段可能导致特征值范围偏离预期,进而影响后续的机器学习模型训练效果。
修正后的意义
修正后的公式能够:
- 准确实现Min-Max标准化的数学原理
- 确保特征值被正确映射到目标范围
- 保持与理论公式的一致性
- 避免因预处理错误导致的模型性能下降
标准化在联邦学习中的重要性
在FATE这样的联邦学习框架中,数据标准化尤为重要,因为:
- 不同参与方的数据可能具有不同的量纲和分布
- 标准化可以确保各方数据在同一尺度下进行联合建模
- 正确的标准化有助于保护数据隐私,避免因量纲差异泄露原始数据信息
最佳实践建议
在实现标准化方法时,建议:
- 严格对照数学公式进行编码实现
- 编写单元测试验证标准化结果是否符合预期
- 对于联邦学习场景,确保各参与方使用相同的标准化参数
- 记录标准化参数以便后续推理时使用相同的变换
这个问题的发现和修正体现了开源社区协作的优势,通过代码审查和用户反馈,能够不断完善框架的核心功能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219