nnUNet项目中的训练轮次(epochs)调整方法详解
2025-06-02 18:38:31作者:鲍丁臣Ursa
训练轮次在医学图像分割中的重要性
在深度学习模型训练过程中,epochs(训练轮次)是一个关键的超参数。它决定了模型将完整遍历训练数据集多少次。对于医学图像分割任务而言,适当的epochs设置尤为重要:
- 过少的epochs可能导致模型欠拟合,无法充分学习医学图像中的复杂特征
- 过多的epochs则可能导致过拟合,模型会记住训练数据中的噪声而非学习通用特征
nnUNet作为医学图像分割领域的标杆框架,提供了灵活的epochs调整机制。
nnUNet内置的epochs调整方案
nnUNet框架已经预置了多种不同训练轮次的训练器变体,这些变体位于训练模块的variants目录下。开发者可以直接使用这些预设的训练器:
nnUNetTrainer_5epochs:5轮训练nnUNetTrainer_10epochs:10轮训练nnUNetTrainer_20epochs:20轮训练nnUNetTrainer_50epochs:50轮训练nnUNetTrainer_100epochs:100轮训练nnUNetTrainer_250epochs:250轮训练nnUNetTrainer_500epochs:500轮训练nnUNetTrainer_1000epochs:1000轮训练(默认)
如何使用特定epochs的训练器
在nnUNetv2中,通过命令行参数-tr可以指定使用哪个训练器。例如,要使用5轮训练的训练器:
nnUNetv2_train <dataset_name_or_id> <configuration> <fold> -tr nnUNetTrainer_5epochs
自定义训练轮次的实现方法
如果需要更灵活的epochs设置(非预设的轮次数),可以通过以下两种方式实现:
- 继承基础训练器:创建自定义训练器类,继承自
nnUNetTrainer并重写__init__方法中的num_epochs参数
class MyCustomTrainer(nnUNetTrainer):
def __init__(self, plans, configuration, fold, dataset_json, unpack_dataset, device):
super().__init__(plans, configuration, fold, dataset_json, unpack_dataset, device)
self.num_epochs = 30 # 设置为30个epochs
- 通过参数传递:修改训练器代码,添加epochs作为可配置参数(需要修改框架源码)
训练轮次选择的实践经验
根据医学图像分割任务的特点,建议考虑以下因素确定epochs数量:
- 数据集规模:小数据集通常需要更多epochs,大数据集可能需要较少epochs
- 模型复杂度:复杂模型需要更多epochs来收敛
- 早停机制:配合验证集监控,可以在性能不再提升时提前终止训练
- 计算资源:更多epochs意味着更长的训练时间和更高的计算成本
nnUNet默认的1000epochs设置是基于大量医学图像数据集实验得出的经验值,对于大多数任务都能取得良好效果。但在特定场景下,适当调整epochs可能会获得更好的性能或训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759