时间序列生成器教程
2024-09-01 07:38:02作者:郦嵘贵Just
项目介绍
timeseries-generator 是一个由 Nike-Inc 开发的 Python 包,用于生成合成的时间序列数据集。这个包提供了一种通用的方法来创建时间序列数据,包括线性趋势、季节性趋势、随机噪声等。它还支持使用外部因素来影响生成的数据,并且提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。
项目快速启动
安装
首先,你需要安装 timeseries-generator 包。你可以使用 pip 进行安装:
pip install timeseries-generator
基本使用
以下是一个简单的示例,展示如何使用 timeseries-generator 生成一个包含线性趋势的时间序列数据:
from timeseries_generator import LinearTrend, Generator, WhiteNoise
import pandas as pd
# 设置一个线性趋势
lt = LinearTrend(coef=2.0, offset=1, col_name="my_linear_trend")
# 创建生成器
g = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-20-2020"))
# 生成数据并绘图
g.generate()
g.plot()
# 添加一些白噪声
wn = WhiteNoise(stdev_factor=0.05)
g.update_factor(wn)
g.generate()
g.plot()
应用案例和最佳实践
生成季节性趋势
你可以使用 SeasonalTrend 因子来生成季节性趋势:
from timeseries_generator import SeasonalTrend
# 设置一个季节性趋势
st = SeasonalTrend(amplitude=10, period=12, col_name="my_seasonal_trend")
# 更新生成器
g.update_factor(st)
g.generate()
g.plot()
使用外部因素
你可以使用 ExternalFactor 来引入外部因素,例如温度对销售的影响:
from timeseries_generator import ExternalFactor
# 设置一个外部因素
ef = ExternalFactor(factor_name="temperature", effect_coef=0.5, col_name="sales")
# 更新生成器
g.update_factor(ef)
g.generate()
g.plot()
典型生态项目
Streamlit Web 界面
timeseries-generator 提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。你可以通过以下命令启动这个界面:
streamlit run examples/streamlit/app.py
Jupyter Notebook 示例
项目还提供了一些 Jupyter Notebook 示例,展示如何生成不同类型的时间序列数据:
generate_stationary_process.ipynb:介绍如何生成平稳过程。generate_seasonal_trends.ipynb:展示如何生成季节性趋势。
你可以通过克隆项目并运行这些 Notebook 来学习更多高级用法。
git clone https://github.com/Nike-Inc/timeseries-generator.git
cd timeseries-generator/examples
jupyter notebook
通过这些示例,你可以更好地理解和应用 timeseries-generator 包来生成各种复杂的时间序列数据。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178