时间序列生成器教程
2024-09-01 12:02:00作者:郦嵘贵Just
项目介绍
timeseries-generator
是一个由 Nike-Inc 开发的 Python 包,用于生成合成的时间序列数据集。这个包提供了一种通用的方法来创建时间序列数据,包括线性趋势、季节性趋势、随机噪声等。它还支持使用外部因素来影响生成的数据,并且提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。
项目快速启动
安装
首先,你需要安装 timeseries-generator
包。你可以使用 pip 进行安装:
pip install timeseries-generator
基本使用
以下是一个简单的示例,展示如何使用 timeseries-generator
生成一个包含线性趋势的时间序列数据:
from timeseries_generator import LinearTrend, Generator, WhiteNoise
import pandas as pd
# 设置一个线性趋势
lt = LinearTrend(coef=2.0, offset=1, col_name="my_linear_trend")
# 创建生成器
g = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-20-2020"))
# 生成数据并绘图
g.generate()
g.plot()
# 添加一些白噪声
wn = WhiteNoise(stdev_factor=0.05)
g.update_factor(wn)
g.generate()
g.plot()
应用案例和最佳实践
生成季节性趋势
你可以使用 SeasonalTrend
因子来生成季节性趋势:
from timeseries_generator import SeasonalTrend
# 设置一个季节性趋势
st = SeasonalTrend(amplitude=10, period=12, col_name="my_seasonal_trend")
# 更新生成器
g.update_factor(st)
g.generate()
g.plot()
使用外部因素
你可以使用 ExternalFactor
来引入外部因素,例如温度对销售的影响:
from timeseries_generator import ExternalFactor
# 设置一个外部因素
ef = ExternalFactor(factor_name="temperature", effect_coef=0.5, col_name="sales")
# 更新生成器
g.update_factor(ef)
g.generate()
g.plot()
典型生态项目
Streamlit Web 界面
timeseries-generator
提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。你可以通过以下命令启动这个界面:
streamlit run examples/streamlit/app.py
Jupyter Notebook 示例
项目还提供了一些 Jupyter Notebook 示例,展示如何生成不同类型的时间序列数据:
generate_stationary_process.ipynb
:介绍如何生成平稳过程。generate_seasonal_trends.ipynb
:展示如何生成季节性趋势。
你可以通过克隆项目并运行这些 Notebook 来学习更多高级用法。
git clone https://github.com/Nike-Inc/timeseries-generator.git
cd timeseries-generator/examples
jupyter notebook
通过这些示例,你可以更好地理解和应用 timeseries-generator
包来生成各种复杂的时间序列数据。
热门项目推荐
相关项目推荐
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madong
基于Webman的权限管理系统
PHP
4
0
cool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2