时间序列生成器教程
2024-09-01 07:38:02作者:郦嵘贵Just
项目介绍
timeseries-generator 是一个由 Nike-Inc 开发的 Python 包,用于生成合成的时间序列数据集。这个包提供了一种通用的方法来创建时间序列数据,包括线性趋势、季节性趋势、随机噪声等。它还支持使用外部因素来影响生成的数据,并且提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。
项目快速启动
安装
首先,你需要安装 timeseries-generator 包。你可以使用 pip 进行安装:
pip install timeseries-generator
基本使用
以下是一个简单的示例,展示如何使用 timeseries-generator 生成一个包含线性趋势的时间序列数据:
from timeseries_generator import LinearTrend, Generator, WhiteNoise
import pandas as pd
# 设置一个线性趋势
lt = LinearTrend(coef=2.0, offset=1, col_name="my_linear_trend")
# 创建生成器
g = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-20-2020"))
# 生成数据并绘图
g.generate()
g.plot()
# 添加一些白噪声
wn = WhiteNoise(stdev_factor=0.05)
g.update_factor(wn)
g.generate()
g.plot()
应用案例和最佳实践
生成季节性趋势
你可以使用 SeasonalTrend 因子来生成季节性趋势:
from timeseries_generator import SeasonalTrend
# 设置一个季节性趋势
st = SeasonalTrend(amplitude=10, period=12, col_name="my_seasonal_trend")
# 更新生成器
g.update_factor(st)
g.generate()
g.plot()
使用外部因素
你可以使用 ExternalFactor 来引入外部因素,例如温度对销售的影响:
from timeseries_generator import ExternalFactor
# 设置一个外部因素
ef = ExternalFactor(factor_name="temperature", effect_coef=0.5, col_name="sales")
# 更新生成器
g.update_factor(ef)
g.generate()
g.plot()
典型生态项目
Streamlit Web 界面
timeseries-generator 提供了一个基于 Streamlit 的 Web 界面,用于交互式地生成合成时间序列数据。你可以通过以下命令启动这个界面:
streamlit run examples/streamlit/app.py
Jupyter Notebook 示例
项目还提供了一些 Jupyter Notebook 示例,展示如何生成不同类型的时间序列数据:
generate_stationary_process.ipynb:介绍如何生成平稳过程。generate_seasonal_trends.ipynb:展示如何生成季节性趋势。
你可以通过克隆项目并运行这些 Notebook 来学习更多高级用法。
git clone https://github.com/Nike-Inc/timeseries-generator.git
cd timeseries-generator/examples
jupyter notebook
通过这些示例,你可以更好地理解和应用 timeseries-generator 包来生成各种复杂的时间序列数据。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870