PaddleSeg数据集切分顺序错乱问题分析与解决方案
2025-05-26 20:27:23作者:凤尚柏Louis
问题背景
在使用PaddleSeg进行图像分割任务时,数据集准备是一个关键步骤。其中,split_dataset_list.py脚本用于将原始数据集切分为训练集、验证集和测试集。然而,在实际使用过程中,用户反馈该脚本生成的训练集(train.txt)和验证集(val.txt)文件内容顺序完全一致,这显然不符合预期。
问题分析
通过分析问题现象和脚本实现原理,我们可以发现:
- 该脚本原本设计目的是按照指定比例随机切分数据集
- 但在某些情况下,随机种子设置或随机化处理可能存在问题
- 导致最终生成的文件内容顺序相同,失去了随机化的效果
解决方案
针对这一问题,我们可以参考成熟的实现方案进行改进:
- 路径拼接与列表构建:首先将图片路径和对应的标签路径用空格拼接成字符串
- 随机打乱:使用Python的random.shuffle函数对构建好的列表进行随机打乱
- 比例切分:按照指定的比例将打乱后的列表切分为训练集、验证集和测试集
实现建议
以下是改进后的实现思路:
import random
# 构建图片-标签对列表
image_label_pairs = []
for img_path in image_paths:
# 根据图片路径生成对应的标签路径
label_path = img_path.replace('images', 'labels').replace('.jpg', '.png')
image_label_pairs.append(f"{img_path} {label_path}")
# 随机打乱
random.shuffle(image_label_pairs)
# 按比例切分
total = len(image_label_pairs)
train_num = int(total * 0.7)
val_num = int(total * 0.3)
train_set = image_label_pairs[:train_num]
val_set = image_label_pairs[train_num:train_num+val_num]
注意事项
- 随机种子:如果需要可重复的结果,可以设置固定的随机种子(random.seed)
- 路径处理:确保图片路径和标签路径的转换逻辑正确
- 比例验证:切分后应检查各集合的数量是否符合预期比例
- 文件写入:将切分后的结果正确写入对应的.txt文件
总结
数据集切分的随机性对于模型训练效果有重要影响。通过改进实现方式,可以确保数据集被正确随机切分,从而为后续的模型训练提供良好的数据基础。在实际应用中,建议对切分后的数据集进行抽样检查,确保切分效果符合预期。
对于PaddleSeg用户,如果遇到类似问题,可以参考上述解决方案对数据集切分过程进行检查和调整,以获得更好的模型训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759