Xinference项目中ChatGLM4Tokenizer的padding_side参数问题分析
问题背景
在Xinference项目中使用CodeGeeX4模型时,用户遇到了一个关于ChatGLM4Tokenizer的错误。当尝试通过API端点进行聊天补全时,系统返回了错误信息:"ChatGLM4Tokenizer._pad() got an unexpected keyword argument 'padding_side'"。
错误分析
这个错误表明在调用ChatGLM4Tokenizer的_pad方法时,传入了一个不被接受的参数padding_side。这通常发生在Hugging Face Transformers库的版本与模型tokenizer实现不兼容的情况下。
技术细节
-
Tokenizer功能:Tokenizer在自然语言处理中负责将文本转换为模型可理解的数字表示(token IDs)。padding_side参数通常控制填充(padding)的方向(左侧或右侧),这对于批处理输入序列很重要。
-
版本兼容性问题:较新版本的Transformers库可能对tokenizer的实现进行了修改,而CodeGeeX4模型基于的ChatGLM4Tokenizer可能还没有适配这些变更。
-
模型架构影响:CodeGeeX4是基于ChatGLM架构的代码生成模型,其tokenizer实现可能有特殊处理,不完全兼容标准Transformers接口。
解决方案
-
临时解决方案:可以尝试降级Transformers库版本到4.39.0到4.40.2之间,这些版本已知与模型兼容。
-
长期解决方案:等待模型提供方更新tokenizer实现,使其兼容最新版Transformers库。模型开发者需要调整tokenizer的_pad方法实现,以支持padding_side参数。
最佳实践建议
-
在使用特定模型时,应查阅模型文档推荐的库版本要求。
-
在部署环境中使用虚拟环境或容器技术隔离不同模型所需的依赖环境。
-
对于生产环境,建议固定所有依赖库的版本,避免自动升级导致的兼容性问题。
-
当遇到类似tokenizer兼容性问题时,可以检查模型仓库的讨论区,通常会有其他用户遇到并讨论类似问题。
这个问题展示了在大型语言模型部署过程中常见的依赖管理挑战,特别是在快速迭代的开源生态系统中,保持各组件版本兼容性至关重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00