Xinference项目中ChatGLM4Tokenizer的padding_side参数问题分析
问题背景
在Xinference项目中使用CodeGeeX4模型时,用户遇到了一个关于ChatGLM4Tokenizer的错误。当尝试通过API端点进行聊天补全时,系统返回了错误信息:"ChatGLM4Tokenizer._pad() got an unexpected keyword argument 'padding_side'"。
错误分析
这个错误表明在调用ChatGLM4Tokenizer的_pad方法时,传入了一个不被接受的参数padding_side。这通常发生在Hugging Face Transformers库的版本与模型tokenizer实现不兼容的情况下。
技术细节
-
Tokenizer功能:Tokenizer在自然语言处理中负责将文本转换为模型可理解的数字表示(token IDs)。padding_side参数通常控制填充(padding)的方向(左侧或右侧),这对于批处理输入序列很重要。
-
版本兼容性问题:较新版本的Transformers库可能对tokenizer的实现进行了修改,而CodeGeeX4模型基于的ChatGLM4Tokenizer可能还没有适配这些变更。
-
模型架构影响:CodeGeeX4是基于ChatGLM架构的代码生成模型,其tokenizer实现可能有特殊处理,不完全兼容标准Transformers接口。
解决方案
-
临时解决方案:可以尝试降级Transformers库版本到4.39.0到4.40.2之间,这些版本已知与模型兼容。
-
长期解决方案:等待模型提供方更新tokenizer实现,使其兼容最新版Transformers库。模型开发者需要调整tokenizer的_pad方法实现,以支持padding_side参数。
最佳实践建议
-
在使用特定模型时,应查阅模型文档推荐的库版本要求。
-
在部署环境中使用虚拟环境或容器技术隔离不同模型所需的依赖环境。
-
对于生产环境,建议固定所有依赖库的版本,避免自动升级导致的兼容性问题。
-
当遇到类似tokenizer兼容性问题时,可以检查模型仓库的讨论区,通常会有其他用户遇到并讨论类似问题。
这个问题展示了在大型语言模型部署过程中常见的依赖管理挑战,特别是在快速迭代的开源生态系统中,保持各组件版本兼容性至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00