LLaMA-Factory项目中Qwen 2.5 VL模型的持续预训练实践
2025-05-01 08:27:10作者:柏廷章Berta
背景概述
LLaMA-Factory作为一个开源的大模型训练框架,近期在社区中引起了广泛关注。其中关于Qwen 2.5 VL(视觉语言)模型的持续预训练(Continued Pretraining,简称CPT)问题,反映了当前多模态模型训练中的一些技术挑战。
技术现状分析
目前LLaMA-Factory框架对Qwen 2.5 VL模型的支持主要集中在两个阶段:
- 监督微调(SFT)阶段
- 直接偏好优化(DPO)阶段
对于持续预训练(CPT)阶段,框架尚未提供原生支持。这主要是因为多模态预训练相比纯文本预训练存在额外的复杂性。
多模态CPT的技术挑战
实现Qwen 2.5 VL的持续预训练面临几个关键技术问题:
-
数据格式兼容性:现有的文本预训练数据格式无法直接适用于图文数据。理想的多模态CPT数据应该能够同时处理图像标记和可训练文本。
-
标签处理机制:在多模态场景下,需要特殊处理图像标记和其他模态标记的标签,可能需要将这些标记的损失权重设置为-100以排除计算。
-
数据加载异常:实践中发现,即使用于SFT的sharegpt单图多轮对话数据集,在CPT模式下也会出现数据加载数量异常的问题。
临时解决方案探讨
虽然框架尚未原生支持,但技术社区提出了一些可能的解决方案:
-
修改训练模式:在SFT阶段开启train_on_prompt选项,同时对图像标记等特殊标记进行标签处理。
-
数据格式转换:将多模态数据转换为类似以下格式:
<IMG1><trainable_text>描述文本1</trainable_text>
<IMG2><trainable_text>描述文本2</trainable_text>
- 等待官方支持:项目维护者已表示未来计划支持多模态CPT,届时将提供更完善的解决方案。
实践建议
对于急需进行Qwen 2.5 VL持续预训练的用户,可以考虑:
- 密切关注项目更新,等待官方支持多模态CPT
- 在现有SFT框架基础上进行适当修改
- 确保多模态数据的预处理符合模型预期格式
- 注意验证数据加载的正确性,避免数据量异常
总结
LLaMA-Factory项目在Qwen 2.5 VL模型的持续预训练支持上还有发展空间,这反映了多模态大模型训练的技术复杂性。随着项目的迭代更新,相信未来会提供更完善的多模态训练解决方案。在此期间,技术社区可以通过各种临时方案满足特定场景下的训练需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355