使用async-profiler进行Off-CPU性能分析的实践指南
背景介绍
在现代分布式系统中,性能分析是诊断系统瓶颈的重要手段。传统的CPU性能分析工具往往只能捕捉到线程在CPU上执行的时间,而忽略了线程在等待I/O、锁或其他资源时的"Off-CPU"时间。对于像Apache Cassandra这样的分布式数据库系统,Off-CPU时间的分析尤为重要,因为它能揭示系统在等待网络、磁盘I/O时的真实性能状况。
async-profiler的Off-CPU分析能力
async-profiler作为一款强大的Java性能分析工具,提供了多种方式来分析Off-CPU时间:
-
Wall-clock模式:通过
-e wall参数可以记录所有线程状态,包括运行中和休眠状态。配合JFR输出格式,可以区分THREAD_RUNNABLE和THREAD_SLEEPING状态,使用jfr2flame工具可以生成特定状态的火焰图。 -
Kprobe模式:通过
-e kprobe:schedule参数可以直接捕获Linux调度器事件,这是分析Off-CPU时间的底层机制。这种方式能提供最精确的Off-CPU时间测量。
实际应用中的挑战与解决方案
权限问题
在现代Linux内核(5.8+)上,由于安全限制,进行性能分析需要特殊权限:
- 传统方式:直接以root用户运行
- 推荐方式:为Java进程授予
CAP_PERFMON能力:
setcap "cap_perfmon,cap_sys_ptrace,cap_syslog=ep" /path/to/java
数据解读技巧
-
过滤无关信息:在wall-clock模式下,火焰图可能包含大量运行中的线程信息,可以通过jfr2flame的
--state参数过滤出只包含休眠状态的调用栈。 -
内核栈与用户栈关联:使用
--cstack dwarf选项可以同时捕获内核调用栈和Java调用栈,这对于分析系统调用阻塞原因特别有用。
最佳实践建议
-
结合使用多种模式:先使用wall-clock模式进行全局分析,再针对特定问题使用kprobe模式深入调查。
-
长期监控:对于生产系统,建议定期收集Off-CPU数据,建立性能基线。
-
安全考虑:在生产环境授予
CAP_PERFMON能力前,应评估安全风险,可以考虑使用专用监控账户而非root账户。
总结
async-profiler提供了强大的Off-CPU分析能力,通过合理配置可以深入理解Java应用在各种等待状态下的性能表现。掌握这些技巧对于优化像Apache Cassandra这样的分布式系统至关重要,能够帮助开发者发现隐藏的性能瓶颈,提升系统整体吞吐量和响应速度。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00