TorchPruner 的项目扩展与二次开发
1. 项目的基础介绍
TorchPruner 是一个针对 PyTorch 模型进行结构化剪枝的开源项目。它提供了一系列用于计算神经网络激活单元重要性的归一化度量方法,以及用于执行剪枝操作的工具。该项目的目标是帮助开发者在不影响模型性能的情况下,减少模型参数的数量,从而降低模型的存储和计算成本。
2. 项目的核心功能
-
归一化度量方法:TorchPruner 实现了多种归一化度量方法,包括随机归一化、APoZ 归一化、敏感性归一化、泰勒归一化、权重范数归一化和 Shapley 归一化等,用于评估神经网络中不同激活单元的重要性。
-
结构化剪枝:项目支持对线性层和卷积层的结构化剪枝,即移除输出神经元或输出过滤器,并自动处理后续层的兼容性问题。
-
实时剪枝:TorchPruner 可以在不加载新模型的情况下,实时调整模型的参数、优化器状态和丢弃率。
3. 项目使用了哪些框架或库?
-
PyTorch:TorchPruner 依赖于 PyTorch 深度学习框架,用于模型的定义、训练和剪枝。
-
Numpy:用于数值计算和数据操作。
-
其他:项目可能还使用了标准的 Python 库,如 torch.utils.data.DataLoader 用于数据加载等。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
TorchPruner/
├── experiments/ # 实验相关的代码和配置文件
├── torchpruner/ # 包含归一化度量和剪枝工具的主要代码
│ ├── attributions/ # 归一化度量方法
│ ├── pruner/ # 剪枝工具
│ └── __init__.py
├── .gitignore # 忽略文件列表
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── setup.py # 项目安装和打包脚本
└── ...
5. 对项目进行扩展或者二次开发的方向
-
新增归一化度量方法:可以根据需求添加新的归一化度量方法,以更精确地评估激活单元的重要性。
-
扩展剪枝策略:可以开发新的剪枝策略,例如针对特定类型网络的剪枝方法,或者结合不同度量方法的复合剪枝策略。
-
优化性能:可以通过优化算法和实现来提高剪枝的效率和准确性。
-
增加可视化工具:开发可视化工具来展示剪枝前后模型的差异,帮助开发者更好地理解剪枝效果。
-
跨框架支持:将 TorchPruner 的核心功能扩展到其他深度学习框架,如 TensorFlow 或 JAX。
通过这些扩展和二次开发,TorchPruner 可以更好地服务于深度学习模型的优化和压缩,为社区提供更多价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00