TorchPruner 的项目扩展与二次开发
1. 项目的基础介绍
TorchPruner 是一个针对 PyTorch 模型进行结构化剪枝的开源项目。它提供了一系列用于计算神经网络激活单元重要性的归一化度量方法,以及用于执行剪枝操作的工具。该项目的目标是帮助开发者在不影响模型性能的情况下,减少模型参数的数量,从而降低模型的存储和计算成本。
2. 项目的核心功能
-
归一化度量方法:TorchPruner 实现了多种归一化度量方法,包括随机归一化、APoZ 归一化、敏感性归一化、泰勒归一化、权重范数归一化和 Shapley 归一化等,用于评估神经网络中不同激活单元的重要性。
-
结构化剪枝:项目支持对线性层和卷积层的结构化剪枝,即移除输出神经元或输出过滤器,并自动处理后续层的兼容性问题。
-
实时剪枝:TorchPruner 可以在不加载新模型的情况下,实时调整模型的参数、优化器状态和丢弃率。
3. 项目使用了哪些框架或库?
-
PyTorch:TorchPruner 依赖于 PyTorch 深度学习框架,用于模型的定义、训练和剪枝。
-
Numpy:用于数值计算和数据操作。
-
其他:项目可能还使用了标准的 Python 库,如 torch.utils.data.DataLoader 用于数据加载等。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
TorchPruner/
├── experiments/ # 实验相关的代码和配置文件
├── torchpruner/ # 包含归一化度量和剪枝工具的主要代码
│ ├── attributions/ # 归一化度量方法
│ ├── pruner/ # 剪枝工具
│ └── __init__.py
├── .gitignore # 忽略文件列表
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── setup.py # 项目安装和打包脚本
└── ...
5. 对项目进行扩展或者二次开发的方向
-
新增归一化度量方法:可以根据需求添加新的归一化度量方法,以更精确地评估激活单元的重要性。
-
扩展剪枝策略:可以开发新的剪枝策略,例如针对特定类型网络的剪枝方法,或者结合不同度量方法的复合剪枝策略。
-
优化性能:可以通过优化算法和实现来提高剪枝的效率和准确性。
-
增加可视化工具:开发可视化工具来展示剪枝前后模型的差异,帮助开发者更好地理解剪枝效果。
-
跨框架支持:将 TorchPruner 的核心功能扩展到其他深度学习框架,如 TensorFlow 或 JAX。
通过这些扩展和二次开发,TorchPruner 可以更好地服务于深度学习模型的优化和压缩,为社区提供更多价值。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00