OneFuzz 开源项目教程
2024-09-15 03:58:48作者:裴锟轩Denise
1. 项目介绍
OneFuzz 是由微软开发的一个跨平台的免费开源模糊测试框架。它旨在通过持续的开发者驱动的模糊测试,在软件发布前识别和修复潜在的安全漏洞。OneFuzz 是一个自托管的 Fuzzing-As-A-Service 平台,支持 Windows 和 Linux 操作系统。它提供了多种功能,如可组合的模糊测试工作流、内置的集成模糊测试、程序化的故障排查和结果去重、崩溃报告通知回调等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- 操作系统:Windows 或 Linux
- Python 3.7 或更高版本
- Rust 编程语言环境
2.2 安装步骤
-
克隆项目仓库
首先,从 GitHub 上克隆 OneFuzz 项目到本地:
git clone https://github.com/microsoft/onefuzz.git cd onefuzz
-
安装依赖
使用
pip
安装所需的 Python 依赖:pip install -r requirements.txt
-
构建项目
使用
cargo
构建 Rust 部分:cargo build --release
-
启动服务
运行以下命令启动 OneFuzz 服务:
python src/onefuzz/onefuzz.py start
2.3 示例代码
以下是一个简单的模糊测试示例代码:
from onefuzz import OneFuzz
# 初始化 OneFuzz 客户端
client = OneFuzz()
# 配置模糊测试任务
task_config = {
"target": "example_target",
"input_dir": "/path/to/inputs",
"output_dir": "/path/to/outputs",
"timeout": 3600
}
# 启动模糊测试任务
client.start_task(task_config)
3. 应用案例和最佳实践
3.1 应用案例
OneFuzz 被广泛应用于微软内部的产品测试中,如 Edge 浏览器、Windows 操作系统等。通过 OneFuzz,开发者可以在软件发布前发现并修复潜在的安全漏洞,从而提高软件的安全性和稳定性。
3.2 最佳实践
- 持续集成:将 OneFuzz 集成到 CI/CD 流程中,确保每次代码提交都能进行模糊测试。
- 多平台测试:利用 OneFuzz 的跨平台特性,在 Windows 和 Linux 上进行全面的模糊测试。
- 自定义模糊测试:根据项目需求,自定义模糊测试工作流和输入数据,以提高测试的覆盖率和有效性。
4. 典型生态项目
OneFuzz 作为一个开源的模糊测试框架,与其他开源项目和工具可以很好地集成,形成一个完整的测试生态系统。以下是一些典型的生态项目:
- Azure DevOps:与 Azure DevOps 集成,实现自动化测试和结果报告。
- GitHub Actions:通过 GitHub Actions 实现持续集成和持续部署(CI/CD)。
- Rust:与 Rust 编程语言结合,进行高效的模糊测试和代码覆盖率分析。
通过这些生态项目的集成,OneFuzz 可以更好地服务于开发者和测试人员,提高软件开发的质量和效率。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28