Apollo iOS 中 Mock 测试时指令(@include/@skip)失效问题解析
在 Apollo iOS 1.15.1 版本中,开发者在进行 GraphQL 查询测试时可能会遇到一个典型问题:当查询中包含 @include 或 @skip 指令时,Mock 测试无法正确返回预期的字段数据。本文将深入分析这个问题及其解决方案。
问题现象
在正常的应用运行中,带有条件指令的查询能够正常工作。例如以下查询会根据变量 loadWithId 和 loadWithToken 的值决定是否返回对应字段:
query GetTaskQuery(
$taskId: Int!,
$token: String!,
$loadWithId: Boolean = false,
$loadWithToken: Boolean = false
) {
find_task(id: $taskId) @include(if: $loadWithId) {
...TaskItemView
}
find_task_by_token(token: $token) @include(if: $loadWithToken) {
...TaskItemView
}
}
但在 Mock 测试环境中,无论变量值如何设置,带有 @include 或 @skip 指令的字段总是被忽略,导致测试失败。
问题根源
这个问题源于 Mock 测试环境没有正确处理查询变量与指令之间的关联。在常规的 Apollo 客户端执行中,查询引擎会自动将变量值应用到指令条件判断上,但在 Mock 测试中,这种关联需要显式配置。
解决方案
Apollo iOS 测试支持库提供了 from(_:withVariables:) 方法来解决这个问题。该方法允许开发者明确指定测试时使用的变量值,确保 Mock 数据能够正确响应指令条件。
使用示例:
let mock = Mock<Query>(
find_task: Mock<Task>(id: 1, name: "Mock Task"),
find_task_by_token: Mock<Task>(id: 1, name: "Mock Task")
)
let selectionSet = SelectionSet.from(
mock,
withVariables: [
"loadWithId": true,
"loadWithToken": false
]
)
通过这种方式,Mock 数据会正确识别 @include(if: $loadWithId) 和 @include(if: $loadWithToken) 指令,并返回符合条件的数据。
最佳实践
-
始终为 Mock 测试提供变量值:即使查询有默认值,也建议在测试中显式指定变量值。
-
保持测试环境一致性:确保测试中使用的变量值与实际应用场景一致。
-
覆盖多种条件组合:编写测试时应该考虑所有可能的指令条件组合,验证各种边界情况。
-
利用类型安全:Apollo 生成的代码提供了类型安全的变量定义,充分利用这一特性可以减少测试错误。
总结
在 Apollo iOS 中进行 Mock 测试时,正确处理 GraphQL 指令需要额外注意变量值的传递。通过使用 from(_:withVariables:) 方法,开发者可以确保 Mock 测试环境能够正确响应 @include 和 @skip 等指令,从而编写出更可靠、更接近真实场景的测试用例。
理解这一机制不仅有助于解决当前问题,也为后续处理更复杂的 GraphQL 查询测试提供了基础。在实际开发中,建议将这种变量传递方式作为 Mock 测试的标准实践之一。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00