斯坦福CRFM/HELM项目中GPQA评估场景的技术实现解析
2025-07-03 09:39:12作者:史锋燃Gardner
在机器学习评估框架HELM的最新开发中,团队正在将GPQA数据集整合为新的评估场景。作为MMLU(大规模多任务语言理解)基准的进阶版本,GPQA以其专业性强、难度梯度分明的特点,正在成为评估AI系统高阶推理能力的重要工具。
技术背景与实现路径
GPQA数据集的原始论文提出了一个包含448个专家级问题的测试集,涵盖生物、化学、物理三大领域。与常规QA数据集不同,其问题设计具有以下技术特征:
- 每个问题配备4个干扰项,干扰项经过领域专家验证
- 包含明确的问题难度分级(简单/中等/困难)
- 答案选项经过对抗性设计,避免表面模式匹配
在HELM框架中的技术实现主要参考了两个现有模块:
- MMLU场景的基础架构(mmlu_scenario.py)
- HuggingFace数据集加载机制(air_bench_scenario.py)
实现时需要特别注意多选题(MCQA)的处理逻辑,可借鉴simple_scenarios.py中的标准化实现模式。测试用例的编写应参照test_simple_scenarios.py的验证方法。
核心实现要点
-
数据加载层:通过HuggingFace datasets库直接加载Idavidrein维护的预处理版本,该版本已做好train/val/test分割
-
场景适配层:
- 继承BasicScenario基类
- 实现construct_input方法处理问题题干
- 设计output_mapping处理选项到标准答案的映射
-
评估指标:
- 基础准确率计算
- 按领域(biology/chemistry/physics)的细分评估
- 按难度等级的分层评估
-
特殊处理:
- 对长题干的分词优化
- 干扰项随机化处理(防止模型记忆选项顺序)
- 元数据字段(如问题ID)的保留
技术价值与影响
该实现的完成将使HELM框架具备评估模型在以下方面的能力:
- 跨学科知识整合
- 复杂概念推理
- 专业领域术语理解
- 对抗性干扰项的辨别能力
与原始MMLU相比,GPQA场景的引入将测试边界从通用知识推向了准专家水平,这对评估前沿大模型的实际认知能力具有重要意义。未来可扩展支持:
- 解释性评估(要求模型给出推理过程)
- 多模态版本(结合分子结构图等专业图表)
- 动态难度适应测试
该工作体现了HELM框架持续跟踪前沿评估需求的技术路线,也为专业领域AI系统的评测建立了新的基准。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328