liboqs项目中HQC-128算法性能下降的技术分析
背景介绍
在量子安全密码学领域,liboqs是一个重要的开源项目,它实现了多种后量子密码算法。其中HQC(Hamming Quasi-Cyclic)是一种基于编码的后量子密钥封装机制。近期有用户报告,在liboqs 0.10.0版本中,HQC-128算法的性能相比0.9.2版本出现了显著下降。
性能对比测试
测试环境配置为x86_64架构的Linux系统,使用gcc 13.3.0编译器,OpenSSL 3.4.0作为底层密码库。测试结果显示:
在0.9.2版本中:
- 密钥生成平均耗时34.28微秒
- 封装操作平均耗时65.90微秒
- 解封装操作平均耗时116.28微秒
而在0.10.0版本中:
- 密钥生成平均耗时增加到1733.83微秒
- 封装操作平均耗时增加到3400.41微秒
- 解封装操作平均耗时增加到5501.27微秒
性能下降幅度达到数十倍,这引起了开发团队的重视。
问题定位过程
开发团队通过一系列对比测试来定位性能下降的原因:
-
首先验证了是否与AVX2指令集优化有关。HQC算法在0.10.0版本中移除了AVX2优化实现,这确实会导致性能下降,但不应有如此大的幅度。
-
测试了不同构建配置下的性能表现:
- 关闭OQS_DIST_BUILD选项后,性能有所提升但仍不及0.9.2版本
- 禁用OpenSSL的AES硬件加速后,0.9.2版本的性能也出现下降
-
对比了不同HQC规范版本的实现:
- 2020-10-01版本(0.9.2使用)
- 2023-04-30版本(0.10.0使用)
-
测试了原始参考实现与PQClean补丁版本的差异
根本原因分析
通过详尽的测试对比,开发团队得出以下结论:
-
算法规范变更:HQC从2020-10-01到2023-04-30版本中,将种子扩展函数从AES改为SHA3实现。由于测试环境中AES有硬件加速支持,这一变更导致显著性能差异。
-
安全修复影响:新版本中修复了一些非恒定时间操作的漏洞,这些安全补丁不可避免地会带来一定的性能开销。
-
优化代码移除:0.10.0版本移除了AVX2指令集优化的实现,这也是性能下降的一个因素。
-
PQClean补丁影响:测试表明PQClean的安全补丁对性能影响很小,主要性能差异来自算法规范本身的变更。
解决方案与建议
对于需要高性能HQC实现的用户,可以考虑以下方案:
-
等待优化实现:开发团队计划在未来集成HQC的AVX2优化实现,但这需要等待上游修复当前存在的安全问题。
-
使用旧版本:如果不需要最新规范的安全特性,可以暂时使用0.9.2版本,但需要注意这不符合最新的算法标准。
-
自行实现优化:有能力的开发者可以尝试基于最新规范实现优化版本,但需要注意正确处理安全补丁。
技术启示
这一案例为密码学实现提供了重要经验:
-
算法规范的变更可能带来意想不到的性能影响,特别是在涉及底层原语替换时。
-
安全修复与性能优化之间存在权衡,需要在两者之间找到平衡点。
-
性能测试应该成为密码学实现发布流程中的重要环节,确保不会引入意外的性能退化。
-
硬件加速支持对算法性能有重大影响,在评估算法性能时需要明确测试环境配置。
对于后量子密码学的实际部署,开发者和用户都需要关注算法规范的演进及其对实现性能的影响,做出合理的技术选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00