liboqs项目中HQC-128算法性能下降的技术分析
背景介绍
在量子安全密码学领域,liboqs是一个重要的开源项目,它实现了多种后量子密码算法。其中HQC(Hamming Quasi-Cyclic)是一种基于编码的后量子密钥封装机制。近期有用户报告,在liboqs 0.10.0版本中,HQC-128算法的性能相比0.9.2版本出现了显著下降。
性能对比测试
测试环境配置为x86_64架构的Linux系统,使用gcc 13.3.0编译器,OpenSSL 3.4.0作为底层密码库。测试结果显示:
在0.9.2版本中:
- 密钥生成平均耗时34.28微秒
- 封装操作平均耗时65.90微秒
- 解封装操作平均耗时116.28微秒
而在0.10.0版本中:
- 密钥生成平均耗时增加到1733.83微秒
- 封装操作平均耗时增加到3400.41微秒
- 解封装操作平均耗时增加到5501.27微秒
性能下降幅度达到数十倍,这引起了开发团队的重视。
问题定位过程
开发团队通过一系列对比测试来定位性能下降的原因:
-
首先验证了是否与AVX2指令集优化有关。HQC算法在0.10.0版本中移除了AVX2优化实现,这确实会导致性能下降,但不应有如此大的幅度。
-
测试了不同构建配置下的性能表现:
- 关闭OQS_DIST_BUILD选项后,性能有所提升但仍不及0.9.2版本
- 禁用OpenSSL的AES硬件加速后,0.9.2版本的性能也出现下降
-
对比了不同HQC规范版本的实现:
- 2020-10-01版本(0.9.2使用)
- 2023-04-30版本(0.10.0使用)
-
测试了原始参考实现与PQClean补丁版本的差异
根本原因分析
通过详尽的测试对比,开发团队得出以下结论:
-
算法规范变更:HQC从2020-10-01到2023-04-30版本中,将种子扩展函数从AES改为SHA3实现。由于测试环境中AES有硬件加速支持,这一变更导致显著性能差异。
-
安全修复影响:新版本中修复了一些非恒定时间操作的漏洞,这些安全补丁不可避免地会带来一定的性能开销。
-
优化代码移除:0.10.0版本移除了AVX2指令集优化的实现,这也是性能下降的一个因素。
-
PQClean补丁影响:测试表明PQClean的安全补丁对性能影响很小,主要性能差异来自算法规范本身的变更。
解决方案与建议
对于需要高性能HQC实现的用户,可以考虑以下方案:
-
等待优化实现:开发团队计划在未来集成HQC的AVX2优化实现,但这需要等待上游修复当前存在的安全问题。
-
使用旧版本:如果不需要最新规范的安全特性,可以暂时使用0.9.2版本,但需要注意这不符合最新的算法标准。
-
自行实现优化:有能力的开发者可以尝试基于最新规范实现优化版本,但需要注意正确处理安全补丁。
技术启示
这一案例为密码学实现提供了重要经验:
-
算法规范的变更可能带来意想不到的性能影响,特别是在涉及底层原语替换时。
-
安全修复与性能优化之间存在权衡,需要在两者之间找到平衡点。
-
性能测试应该成为密码学实现发布流程中的重要环节,确保不会引入意外的性能退化。
-
硬件加速支持对算法性能有重大影响,在评估算法性能时需要明确测试环境配置。
对于后量子密码学的实际部署,开发者和用户都需要关注算法规范的演进及其对实现性能的影响,做出合理的技术选择。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









