在Aurora项目中实现流式打印API返回内容的技术解析
2025-07-03 20:43:13作者:袁立春Spencer
概述
在Aurora项目的开发过程中,处理大型语言模型(LLM)的API响应时,流式传输(Streaming)是一种提高用户体验的重要技术。本文将深入探讨如何在Python中实现流式打印API返回内容的技术方案。
流式传输的基本原理
流式传输允许服务器在生成响应内容的同时逐步发送数据,而不是等待整个响应完成后再一次性发送。这种方式特别适合处理大型语言模型的输出,因为:
- 用户可以即时看到部分结果,无需等待整个响应完成
- 降低了内存使用,因为不需要缓存整个响应
- 提高了响应速度,特别是对于长文本生成场景
技术实现方案
关键组件
- HTTP请求头设置:必须包含
'Accept': 'text/event-stream'头部,告知服务器客户端支持服务器发送事件(SSE) - stream参数:在请求数据中设置
"stream": True启用流式传输 - 响应处理:使用
response.iter_lines()逐行处理服务器返回的数据
完整实现代码
import requests
import json
url = "http://127.0.0.1:8080/v1/chat/completions"
headers = {'Accept': 'text/event-stream'}
data = {
"model": "gpt-3.5-turbo",
"messages": [{
"role": "user",
"content": "Hello!"
}],
"stream": True
}
response = requests.post(url, stream=True, headers=headers, data=json.dumps(data))
for line in response.iter_lines(decode_unicode=True):
if line:
if line.startswith("data:"):
event_data = line[5:].strip()
if event_data == '[DONE]':
break
try:
event_json = json.loads(event_data)
if 'content' in event_json['choices'][0]['delta']:
print(event_json['choices'][0]['delta']['content'], end="", flush=True)
except json.JSONDecodeError as e:
print("Error decoding JSON:", e)
else:
print("Invalid SSE format")
response.close()
代码解析
-
请求配置:
- 设置
stream=True参数启用流式请求 - 使用
text/event-stream内容类型表明支持服务器发送事件
- 设置
-
响应处理:
iter_lines()方法逐行读取响应内容- 检查每行是否以"data:"开头,这是SSE的标准格式
- 处理特殊的"[DONE]"事件表示流结束
- 解析JSON内容并提取增量(delta)更新
-
输出处理:
- 使用
end=""避免自动换行 flush=True确保内容立即显示而不被缓冲
- 使用
常见问题与解决方案
-
连接中断处理:
- 实现重试逻辑处理网络问题
- 添加超时设置避免无限等待
-
性能优化:
- 考虑使用异步请求(aiohttp)提高并发性能
- 对于高频率更新,可以实现节流机制
-
错误处理增强:
- 添加更全面的异常捕获
- 实现日志记录以便调试
应用场景
这种流式处理技术特别适用于:
- 聊天机器人应用,实现类似人类的逐字输出效果
- 代码生成工具,用户可以即时看到生成结果
- 长文本摘要生成,逐步显示内容提高用户体验
总结
在Aurora项目中实现流式API响应处理能够显著提升用户体验和系统效率。通过合理配置HTTP请求和使用逐行处理技术,开发者可以构建出响应迅速、内存高效的应用程序。本文提供的实现方案可以作为基础,开发者可以根据具体需求进行扩展和优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140