Kysely项目中使用JSON_EXTRACT函数进行条件查询的最佳实践
2025-05-19 01:04:11作者:齐添朝
在Kysely这个类型安全的SQL查询构建器中,开发者经常需要处理JSON类型数据的查询操作。本文将深入探讨如何在Kysely中正确使用JSON_EXTRACT函数进行条件查询,以及相关的类型安全考虑。
问题背景
当我们需要从数据库表的JSON字段中提取特定值时,通常会使用JSON_EXTRACT函数(在SQLite中)或类似的JSON操作函数。一个常见的需求场景是:
- 从JSON字段中提取特定路径的值
- 在WHERE子句中使用这个提取的值作为过滤条件
常见误区
许多开发者会尝试以下方式:
db.selectFrom('nodes')
.select(({ fn, val, ref }) => [
'id',
fn<string>('json_extract', ['layoutData', val('$.isRootNode')]).as('isRootNode')
])
.where('isRootNode', '==', 'true')
这种方法虽然在某些数据库系统中可以执行,但存在两个主要问题:
- 类型不安全:TypeScript无法识别通过
.as()创建的别名列 - 跨数据库兼容性问题:并非所有SQL方言都支持在WHERE子句中引用SELECT中定义的列别名
推荐解决方案
Kysely团队推荐的做法是直接在WHERE子句中使用JSON提取函数:
db.selectFrom('nodes')
.select(({ fn, val, ref }) => [
'id',
jsonExtract(ref('layoutData'), '$.isRootNode').as('isRootNode'),
])
.where('type', 'is not', null)
.where('isDeleted', 'is not', 1)
.where(({ eb, ref }) => eb(
jsonExtract(ref('layoutData'), '$.isRootNode'), '==', 'true'
))
.$narrowType<{ type: kysely.NotNull }>()
// 辅助函数定义
function jsonExtract(col: Expression<unknown>, path: string) {
return sql<string>`json_extract(${col}, ${path})`
}
方案优势
- 完全类型安全:TypeScript能够正确推断所有类型
- 数据库兼容性:适用于所有SQL方言
- 代码可重用性:通过辅助函数封装JSON提取逻辑
- 查询清晰性:WHERE条件直接表达业务意图
深入理解
在Kysely的设计哲学中,查询构建器应该尽可能反映底层SQL的特性,而不是隐藏它们。由于PostgreSQL等数据库不支持在WHERE子句中引用SELECT中定义的别名,Kysely选择不提供这种"魔法"功能,以保持透明性和可预测性。
对于JSON操作,建议开发者:
- 为常用的JSON操作创建辅助函数
- 在WHERE子句中直接使用这些函数
- 如果需要结果集中包含提取的值,可以在SELECT中重复相同的表达式
性能考虑
虽然上述方案在SELECT和WHERE中重复了相同的JSON提取表达式,但现代数据库优化器通常能够识别并优化这种情况,不会导致性能问题。如果确实需要避免重复,可以考虑使用CTE(Common Table Expression)或子查询。
总结
在Kysely中处理JSON字段查询时,最佳实践是直接在WHERE条件中使用JSON提取函数,而不是尝试引用SELECT中定义的别名。这种方法既保证了类型安全,又确保了跨数据库的兼容性,同时保持了代码的清晰性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218