Kysely项目中使用JSON_EXTRACT函数进行条件查询的最佳实践
2025-05-19 13:23:58作者:齐添朝
在Kysely这个类型安全的SQL查询构建器中,开发者经常需要处理JSON类型数据的查询操作。本文将深入探讨如何在Kysely中正确使用JSON_EXTRACT函数进行条件查询,以及相关的类型安全考虑。
问题背景
当我们需要从数据库表的JSON字段中提取特定值时,通常会使用JSON_EXTRACT函数(在SQLite中)或类似的JSON操作函数。一个常见的需求场景是:
- 从JSON字段中提取特定路径的值
- 在WHERE子句中使用这个提取的值作为过滤条件
常见误区
许多开发者会尝试以下方式:
db.selectFrom('nodes')
.select(({ fn, val, ref }) => [
'id',
fn<string>('json_extract', ['layoutData', val('$.isRootNode')]).as('isRootNode')
])
.where('isRootNode', '==', 'true')
这种方法虽然在某些数据库系统中可以执行,但存在两个主要问题:
- 类型不安全:TypeScript无法识别通过
.as()创建的别名列 - 跨数据库兼容性问题:并非所有SQL方言都支持在WHERE子句中引用SELECT中定义的列别名
推荐解决方案
Kysely团队推荐的做法是直接在WHERE子句中使用JSON提取函数:
db.selectFrom('nodes')
.select(({ fn, val, ref }) => [
'id',
jsonExtract(ref('layoutData'), '$.isRootNode').as('isRootNode'),
])
.where('type', 'is not', null)
.where('isDeleted', 'is not', 1)
.where(({ eb, ref }) => eb(
jsonExtract(ref('layoutData'), '$.isRootNode'), '==', 'true'
))
.$narrowType<{ type: kysely.NotNull }>()
// 辅助函数定义
function jsonExtract(col: Expression<unknown>, path: string) {
return sql<string>`json_extract(${col}, ${path})`
}
方案优势
- 完全类型安全:TypeScript能够正确推断所有类型
- 数据库兼容性:适用于所有SQL方言
- 代码可重用性:通过辅助函数封装JSON提取逻辑
- 查询清晰性:WHERE条件直接表达业务意图
深入理解
在Kysely的设计哲学中,查询构建器应该尽可能反映底层SQL的特性,而不是隐藏它们。由于PostgreSQL等数据库不支持在WHERE子句中引用SELECT中定义的别名,Kysely选择不提供这种"魔法"功能,以保持透明性和可预测性。
对于JSON操作,建议开发者:
- 为常用的JSON操作创建辅助函数
- 在WHERE子句中直接使用这些函数
- 如果需要结果集中包含提取的值,可以在SELECT中重复相同的表达式
性能考虑
虽然上述方案在SELECT和WHERE中重复了相同的JSON提取表达式,但现代数据库优化器通常能够识别并优化这种情况,不会导致性能问题。如果确实需要避免重复,可以考虑使用CTE(Common Table Expression)或子查询。
总结
在Kysely中处理JSON字段查询时,最佳实践是直接在WHERE条件中使用JSON提取函数,而不是尝试引用SELECT中定义的别名。这种方法既保证了类型安全,又确保了跨数据库的兼容性,同时保持了代码的清晰性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446