PEFT项目中LoRA配置的模块排除功能解析
在PEFT(Parameter-Efficient Fine-Tuning)项目中,LoRA(Low-Rank Adaptation)是一种流行的微调技术,它通过在预训练模型的特定模块旁添加低秩矩阵来实现高效微调。近期社区提出了一个增强需求:在LoRA配置中增加模块排除功能,使开发者能够更精细地控制哪些模块参与LoRA适配。
技术背景
LoRA技术通过在Transformer架构的关键位置(如注意力机制的query/key/value投影层和前馈网络的中间层)插入可训练的低秩矩阵,大幅减少了微调所需的参数量。在标准实现中,开发者通过target_modules参数指定需要适配的模块名称模式(如"proj_out"、"proj_mlp"等),这些模式会匹配模型中的所有对应模块。
需求场景
在实际应用中,研究人员发现:
- 适配某些特定模块(如proj_out和proj_mlp)能显著提升模型性能
- 但排除最后一层的这些模块往往能使模型表现更加稳定和鲁棒
- 当前实现缺乏直接排除特定模块的机制,导致开发者需要手动构建复杂的正则表达式
技术实现方案
PEFT项目通过两种方式解决了这个问题:
-
正则表达式方案:利用Python正则表达式的强大功能,开发者可以在
target_modules中直接编写排除特定层的模式。例如,要匹配除第11层外的所有fc1模块,可以使用模式".*\.(?!11)\d+\.fc1$"。 -
显式排除方案:通过#2102合并的代码变更,新增了
exclude_modules参数,允许开发者直接指定需要排除的模块模式列表。这个实现会先匹配target_modules,然后从结果中剔除匹配exclude_modules的模块。
最佳实践建议
对于不同场景,推荐以下使用方式:
- 简单排除:当只需要排除少量明确指定的模块时,使用
exclude_modules参数最为直观 - 复杂模式匹配:当排除规则涉及多层复杂逻辑时,直接编写正则表达式可能更高效
- 性能考虑:正则表达式方案通常比两步匹配(先target后exclude)有更好的运行时性能
技术细节
在底层实现上,模块匹配过程经历了以下步骤:
- 遍历模型的所有命名模块
- 对每个模块名称,首先检查是否匹配
target_modules中的任一模式 - 如果配置了
exclude_modules,进一步检查是否匹配其中的排除模式 - 通过所有检查的模块才会被添加LoRA适配器
这种设计保持了向后兼容性,同时提供了更精细的控制能力,使研究人员能够进行更精确的消融实验和性能调优。
总结
PEFT项目通过引入模块排除功能,进一步增强了LoRA技术的灵活性和实用性。这一改进特别有利于需要精细控制适配模块的研究场景,如:
- 研究不同层适配对模型性能的影响
- 避免适配可能引起不稳定的特定模块
- 实现更精细的参数高效微调策略
开发者现在可以根据具体需求,选择最适合的模块选择方式,从而获得更好的模型微调效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00