GLM-4V-9B多模态模型微调中的常见问题与解决方案
2025-06-03 12:54:42作者:侯霆垣
问题背景
在GLM-4V-9B多模态大模型的微调过程中,开发者经常会遇到一些典型的技术问题。这些问题主要集中在对包含图像数据的多轮对话数据集的处理上。本文将详细分析这些问题的成因,并提供相应的解决方案。
主要问题分析
1. 图像标记识别错误
在微调过程中,最常见的错误是模型无法正确识别图像标记(token)。具体表现为报错信息"ValueError: 151339 is not in list",其中151339是GLM-4V-9B模型中表示图像开始标记的特殊token ID。
问题原因:
- 数据集中某些样本缺少图像内容
- 图像路径配置错误导致无法加载实际图像
- 数据格式不符合模型预期的多模态输入要求
解决方案:
- 确保每条包含图像的数据都正确配置了image字段
- 验证图像路径是否有效,建议使用绝对路径
- 检查数据格式是否符合标准多轮对话格式
2. 优化器初始化失败
另一个常见问题是训练过程中出现的"DummyOptim object has no attribute 'step'"错误。这表明模型优化器未能正确初始化。
问题原因:
- 深度学习框架配置不当
- 混合精度训练设置冲突
- 硬件资源不足导致优化器降级
解决方案:
- 检查CUDA和PyTorch版本兼容性
- 调整混合精度训练配置
- 确保GPU内存充足,必要时减少batch size
最佳实践建议
数据准备规范
对于GLM-4V-9B的多模态微调,建议采用以下数据格式:
{
"messages": [
{
"role": "user",
"content": "图片内容描述问题",
"image": "/绝对路径/图片文件.jpg"
},
{
"role": "assistant",
"content": "针对图片的回答"
}
]
}
关键注意事项:
- 确保每个包含图像的对话轮次都有对应的image字段
- 图像路径建议使用绝对路径
- 图像格式支持常见类型如JPG、PNG等
训练配置优化
推荐的基础训练参数配置:
- 学习率:1e-4到5e-5之间
- 批量大小:根据GPU内存调整,通常1-4
- LoRA参数:rank=8, alpha=32
- 梯度累积:根据实际batch size调整
总结
GLM-4V-9B作为多模态大模型,在微调过程中需要特别注意多模态数据的处理。通过规范数据准备流程、合理配置训练参数,可以有效避免常见的151339 token识别错误和优化器初始化问题。对于大规模微调任务,建议先在小型数据集上验证流程,再逐步扩展到完整数据集。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1