Safetensors项目中的零拷贝保存优化探讨
2025-06-25 23:22:58作者:裘晴惠Vivianne
背景介绍
Safetensors是一个高效的张量存储格式,以其零拷贝加载特性而闻名。然而,在保存模型时,当前的实现存在性能瓶颈。当使用safetensors.torch.save_file函数时,张量数据会通过numpy的to_bytes方法进行转换,这一过程在内存和性能方面都带来了显著开销。
问题分析
当前实现机制
目前Safetensors的保存流程包含以下关键步骤:
- 将张量数据转换为numpy数组
- 调用
to_bytes方法获取字节表示 - 通过Rust接口写入磁盘
这一流程在以下场景会带来明显问题:
- 处理大型模型时(如70B参数的LLM)
- 需要频繁进行模型转换的脚本
- 内存受限的环境
性能影响
实测数据显示,对于9.27GB的数据:
- 加载耗时约2秒(4.9GB/s)
- 保存耗时约10秒(0.98GB/s)
- 使用优化方法后保存可提升至7.4秒(1.34GB/s)
在GPU环境下,性能差异更为明显,主要由于额外的数据拷贝操作。
技术挑战
实现真正的零拷贝保存面临几个技术难点:
- 跨框架兼容性:需要支持多种深度学习框架(PyTorch、TensorFlow等)
- 内存管理:确保在不同内存空间(如GPU显存)的数据能高效传输
- 安全边界:保持现有的安全特性,防止越界访问
潜在解决方案
方案一:直接内存访问
利用PyTorch的.numpy()接口实现零拷贝转换,然后通过numpy的tofile直接写入。这种方法:
- 完全在Python层面实现
- 避免了额外的内存拷贝
- 但可能牺牲跨框架兼容性
方案二:改进Rust接口
等待PyO3对MemoryView的支持成熟后:
- 可以直接传递内存视图给Rust
- 保持现有的安全特性
- 实现真正的零拷贝
方案三:混合实现
根据运行时环境动态选择最优路径:
- 对支持直接内存访问的框架使用零拷贝路径
- 其他情况回退到当前实现
实际应用影响
在实际模型转换场景中(如FP16到FP8转换):
- 优化实现可节省约30%的时间
- 内存占用减半,使大模型转换在有限内存环境中成为可能
- 对服务器级硬件的大页面支持更友好
未来展望
随着深度学习模型规模的持续增长,高效的序列化/反序列化机制变得愈发重要。Safetensors作为专门为张量数据设计的格式,在保持现有优势的同时,通过优化保存路径可以:
- 进一步提升端到端处理效率
- 降低内存需求,扩大适用场景
- 为分布式训练等场景提供更好的支持
开发者社区正在积极探索各种优化方案,平衡性能、兼容性和安全性,以期为深度学习工作流带来更高效的数据处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868