Swift Composable Architecture 中 ObservableState 导致 UITextView 失效问题解析
问题背景
在 iOS 开发中,Swift Composable Architecture (TCA) 是一个流行的状态管理框架。近期在 iOS 17.4 以下版本中,开发者发现了一个与 @ObservableState 和 UITextView 相关的奇怪问题:当从可观察的 TCA 特性中呈现一个不可观察的特性时,如果该特性包含一个封装在 Representable 视图中的 UITextView,用户将无法在文本视图中输入任何内容。
问题现象
具体表现为:
- 在 iOS 17.2 和 17.3 设备上,当使用
@ObservableState呈现包含UITextView的视图时,文本视图无法接收输入 UITextView的委托方法会被触发,但textView.text属性始终为空字符串- 该问题在 iOS 17.4 及以上版本中不存在
- 纯 SwiftUI 实现或使用旧版 TCA API 时不会出现此问题
问题根源
经过深入分析,这个问题实际上是由于过度渲染导致的。当父特性是可观察的而子特性不可观察时,父特性会导致额外的重新渲染。UITextView 的 Representable 封装对这种过度渲染处理不佳,导致输入失效。
关键点在于:
- 当使用
WithPerceptionTracking包装不可观察的特性时,会导致任何状态变化都触发视图重新渲染 UITextView的 Representable 实现对这种频繁的重新渲染处理不够健壮- iOS 17.4 可能改进了这方面的处理逻辑
解决方案
推荐解决方案
最简单的解决方案是避免对不可观察的特性使用 WithPerceptionTracking。因为不可观察的特性本身不需要感知追踪,所以可以安全地移除包装:
.sheet(item: $destination) { destination in
switch destination {
case .compose:
// 对不可观察特性不使用 WithPerceptionTracking
ComposeView(store: store.scope(state: \.compose, action: \.compose))
case .observableCompose:
WithPerceptionTracking {
// 只有可观察特性需要包装
ObservableComposeView(store: store.scope(state: \.observableCompose, action: \.observableCompose))
}
}
}
其他可行方案
-
使用
@ObservationStateIgnored标记: 在父特性的状态中,可以使用@ObservationStateIgnored标记子特性状态,避免过度观察:@ObservableState struct State { @ObservationStateIgnored var compose = ComposeFeature.State() } -
统一使用可观察特性: 将子特性也迁移为可观察特性可以避免这个问题,但可能需要更多的迁移工作。
技术原理深入
这个问题揭示了 SwiftUI 和 UIKit 交互时的一些微妙之处:
-
Representable 视图的限制:
UIViewRepresentable桥接的 UIKit 组件对 SwiftUI 的渲染周期更为敏感,特别是在频繁重新渲染的情况下。 -
状态观察的粒度: TCA 的
@ObservableState提供了细粒度的状态观察,但不当使用可能导致不必要的重新渲染。 -
版本差异: iOS 17.4 可能优化了 SwiftUI 与 UIKit 组件在频繁更新时的交互方式,使得问题不再出现。
最佳实践建议
-
合理使用感知追踪: 只为真正需要观察变化的特性使用
WithPerceptionTracking。 -
版本兼容性考虑: 对于需要支持多个 iOS 版本的应用,应该进行充分的版本测试。
-
逐步迁移策略: 当从传统 TCA API 迁移到可观察 API 时,建议采用渐进式迁移,并充分测试各组件。
-
性能监控: 使用
_printChanges()调试工具监控状态变化,确保没有意外的过度渲染。
总结
这个问题展示了现代声明式 UI 框架与传统命令式 UI 组件交互时的复杂性。理解状态观察的机制和合理使用 TCA 的各种 API 是避免此类问题的关键。通过遵循推荐的最佳实践,开发者可以构建出既高效又稳定的应用程序。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00