Scrutiny项目监控NVMe硬盘的配置要点
Scrutiny是一款优秀的硬盘健康监控工具,但在实际部署过程中,用户可能会遇到无法正确识别NVMe固态硬盘的情况。本文将详细分析该问题的成因并提供解决方案。
问题现象
当用户通过Docker容器部署Scrutiny时,发现系统无法正确识别某些硬盘设备,特别是NVMe固态硬盘(如/dev/nvme0n1)和部分SATA硬盘(如/dev/sda、/dev/sdb)。这些设备虽然已经在Docker配置中明确映射,但仍未出现在Web管理界面中。
根本原因分析
经过技术验证,发现该问题主要由两个关键配置缺失导致:
-
权限不足:NVMe固态硬盘的监控需要更高的系统权限,仅使用SYS_RAWIO能力不足以支持完整的NVMe设备访问。
-
设备路径格式:NVMe设备在Docker中的映射路径需要采用简化的格式,完整的设备节点路径(如/dev/nvme0n1)反而会导致识别失败。
解决方案
1. 添加必要的Linux能力
在Docker容器的cap_add配置中,必须添加SYS_ADMIN能力,这是访问NVMe设备所必需的权限。修改后的配置示例如下:
cap_add:
- SYS_RAWIO
- SYS_ADMIN
2. 修正NVMe设备映射路径
NVMe设备的映射路径应简化为控制器级别,而非具体的命名空间。例如:
devices:
- "/dev/nvme0"
- "/dev/sda"
- "/dev/sdb"
这种简化路径格式能让Scrutiny正确识别NVMe控制器下的所有命名空间。
完整配置示例
以下是经过验证可用的完整Docker Compose配置示例:
version: '3.5'
services:
scrutiny:
container_name: scrutiny
image: ghcr.io/analogj/scrutiny:master-omnibus
cap_add:
- SYS_RAWIO
- SYS_ADMIN
ports:
- "18080:8080"
- "8086:8086"
volumes:
- /run/udev:/run/udev:ro
- ./config:/opt/scrutiny/config
- ./influxdb:/opt/scrutiny/influxdb
devices:
- "/dev/nvme0"
- "/dev/sda"
- "/dev/sdb"
- "/dev/sdc"
environment:
- COLLECTOR_CRON_SCHEDULE=* 2 * * *
验证方法
配置修改后,可以通过以下步骤验证是否生效:
- 重启Scrutiny容器
- 等待收集器完成首次扫描(或手动触发)
- 检查Web界面中是否显示了所有预期的硬盘设备
- 确认各硬盘的健康状态信息是否正常更新
技术原理
NVMe设备与传统的SATA/AHCI设备在访问机制上有显著差异。Scrutiny需要通过特定的系统调用和接口来获取NVMe设备的SMART数据,这需要更高的权限级别。SYS_ADMIN能力提供了必要的权限,使容器能够访问这些特殊接口。
同时,NVMe设备的命名规则(如nvme0n1)中,第一个数字代表控制器编号,第二个数字代表命名空间编号。直接映射控制器设备(nvme0)可以让Scrutiny自动发现和管理该控制器下的所有命名空间。
总结
通过正确配置Docker容器的权限和设备映射,Scrutiny可以完美支持包括NVMe固态硬盘在内的各种存储设备的健康监控。这一解决方案不仅适用于报告中的特定案例,也可作为类似部署场景的参考配置。对于企业级部署或关键业务系统,建议在修改配置前进行充分测试,确保系统的稳定性和安全性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00