ONNX Runtime在Qualcomm Android设备上使用QNN GPU后端崩溃问题解析
2025-05-13 09:36:45作者:伍希望
问题背景
在Qualcomm Android设备(QCS610)上使用ONNX Runtime时,当尝试通过QNN执行提供程序(Execution Provider)的GPU后端运行MobileNet模型时,程序会崩溃并返回错误代码6999。值得注意的是,相同的模型在CPU后端(libQnnCpu.so)上可以正常运行。
技术分析
环境验证
开发者已通过平台验证工具确认:
- 设备支持QNN GPU后端
- 检测到OpenCL 2.0 Adreno(TM) 612驱动
- 核心版本为Adreno(TM) 608
- 所有单元测试均已通过
模型选择
根据Qualcomm的建议,选择了非量化(32位浮点)的MobileNet-v2模型,因为:
- 量化模型目前与GPU后端不兼容
- 模型输入输出均为float32格式
错误表现
日志显示:
- 节点分配验证通过,所有节点都正确放置在QNNExecutionProvider上
- 初始化阶段顺利完成
- 推理阶段开始时,在第一个GPU节点执行时立即崩溃
- 错误代码始终为6999,且不随模型或节点数量变化
可能原因
-
共享内存问题:GPU计算可能需要特定的内存共享机制,旧版本可能未正确实现
-
库版本兼容性:
- ONNX Runtime版本(1.20.1)可能不完全支持该设备
- QNN库(qairt 2.28.2.241116)可能存在已知问题
-
驱动层问题:虽然验证工具显示驱动正常,但实际运行时可能有细微差异
-
链接库缺失:可能缺少某些隐式依赖的供应商库
解决方案
开发者最终通过以下升级解决了问题:
- 将ONNX Runtime升级至1.21版本
- 将qairt升级至2.32版本
这表明问题很可能源于:
- ONNX Runtime 1.21引入了对QNN共享内存的改进支持
- 新版qairt修复了特定设备的兼容性问题
技术建议
对于在移动设备上使用ONNX Runtime的开发者:
-
版本匹配:确保ONNX Runtime与QNN库版本严格匹配
-
模型格式:GPU后端必须使用非量化(32位浮点)模型
-
验证流程:即使平台验证通过,仍需实际运行测试
-
日志分析:启用详细日志有助于定位问题节点
-
升级策略:遇到类似问题时,优先考虑升级到最新稳定版本
结论
这个问题展示了在移动端部署机器学习模型时可能遇到的特定硬件兼容性问题。通过保持框架和库的最新版本,可以避免许多潜在的兼容性问题。对于Qualcomm设备上的QNN GPU后端使用,确保使用足够新的ONNX Runtime和qairt版本是关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30