基于ml-sound-classifier的声音分类应用实例解析
2025-06-19 01:28:33作者:何举烈Damon
项目概述
ml-sound-classifier是一个专注于声音分类任务的机器学习项目,提供了完整的训练流程和应用示例。该项目特别适合需要处理音频分类问题的开发者和研究人员使用。
环境准备
在开始训练之前,需要先安装必要的Python模块。项目提供了一个便捷的安装脚本:
cd ext
./download.sh
这个脚本会自动下载并安装所有依赖项,确保后续的训练过程能够顺利进行。
应用示例详解
1. FSDKaggle2018声音分类
这个示例展示了如何使用Freesound Dataset Kaggle 2018数据集训练模型。
关键特性:
- 提供了预训练模型
mobilenetv2_fsd2018_41cls.h5,该模型经过500轮训练,具有很好的分类性能 - 音频参数:采样率44.1kHz,时长1秒,128个梅尔频带和128个时间帧
- 模型可作为其他任务的预训练基础
训练MobileNetV2模型:
cd apps/fsdkaggle2018
python train.py
训练AlexNet模型:
cd apps/fsdkaggle2018/alexnet
python train.py
模型转换: 项目还提供了将训练好的模型转换为TensorFlow .pb格式的笔记本,便于在生产环境中部署使用。
2. FSDKaggle2018小型化版本
针对计算资源有限的环境,这个示例提供了处理较小音频数据的方案。
关键特性:
- 使用较低的采样率(16kHz)和较少的梅尔频带(64个)
- 预训练模型
mobilenetv2_small_fsd2018_41cls.h5可供直接使用 - 计算开销更小,适合资源受限的环境
训练命令:
cd apps/fsdkaggle2018small
python train_this.py
3. 激光机器监听器(实验性应用)
这是一个实验性的应用示例,展示了如何将CNN应用于硬件实验室中的声音分类问题。
应用场景分析:
- 原始问题使用简单神经网络已能取得不错效果
- CNN模型在以下情况可能更有效:
- 需要单一模型适应不同实验室环境
- 拥有来自多个实验室和机器的充足数据
完整工作流程:
- 下载数据
cd apps/cnn-laser-machine-listener ./download.sh - 使用
CNN-LML-Preprocess-Data.ipynb预处理数据 - 使用
CNN-LML-Train.ipynb训练模型 - 使用
CNN-LML-TF-Model-Conversion.ipynb转换模型格式 - 实时预测
python ../../realtime_predictor.py
AlexNet变体尝试: 项目还尝试了基于AlexNet的模型,不仅效果更好,而且运行速度更快:
- 训练和结果可视化见相关笔记本
- 提供预转换的模型文件供快速尝试
技术要点总结
- 模型选择:项目提供了MobileNetV2和AlexNet两种架构选择,适应不同场景需求
- 音频处理:支持不同采样率和特征提取参数,可根据计算资源灵活调整
- 完整流程:从数据准备、模型训练到部署转换,覆盖了声音分类任务的完整生命周期
- 实践指导:通过具体应用示例,展示了如何将技术应用于实际问题
对于刚接触声音分类的开发者,建议先从FSDKaggle2018示例开始,理解整个工作流程后,再尝试其他应用场景。实验性应用则更适合有特定领域需求的研究人员参考。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
366
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869