基于ml-sound-classifier的声音分类应用实例解析
2025-06-19 04:28:10作者:何举烈Damon
项目概述
ml-sound-classifier是一个专注于声音分类任务的机器学习项目,提供了完整的训练流程和应用示例。该项目特别适合需要处理音频分类问题的开发者和研究人员使用。
环境准备
在开始训练之前,需要先安装必要的Python模块。项目提供了一个便捷的安装脚本:
cd ext
./download.sh
这个脚本会自动下载并安装所有依赖项,确保后续的训练过程能够顺利进行。
应用示例详解
1. FSDKaggle2018声音分类
这个示例展示了如何使用Freesound Dataset Kaggle 2018数据集训练模型。
关键特性:
- 提供了预训练模型
mobilenetv2_fsd2018_41cls.h5,该模型经过500轮训练,具有很好的分类性能 - 音频参数:采样率44.1kHz,时长1秒,128个梅尔频带和128个时间帧
- 模型可作为其他任务的预训练基础
训练MobileNetV2模型:
cd apps/fsdkaggle2018
python train.py
训练AlexNet模型:
cd apps/fsdkaggle2018/alexnet
python train.py
模型转换: 项目还提供了将训练好的模型转换为TensorFlow .pb格式的笔记本,便于在生产环境中部署使用。
2. FSDKaggle2018小型化版本
针对计算资源有限的环境,这个示例提供了处理较小音频数据的方案。
关键特性:
- 使用较低的采样率(16kHz)和较少的梅尔频带(64个)
- 预训练模型
mobilenetv2_small_fsd2018_41cls.h5可供直接使用 - 计算开销更小,适合资源受限的环境
训练命令:
cd apps/fsdkaggle2018small
python train_this.py
3. 激光机器监听器(实验性应用)
这是一个实验性的应用示例,展示了如何将CNN应用于硬件实验室中的声音分类问题。
应用场景分析:
- 原始问题使用简单神经网络已能取得不错效果
- CNN模型在以下情况可能更有效:
- 需要单一模型适应不同实验室环境
- 拥有来自多个实验室和机器的充足数据
完整工作流程:
- 下载数据
cd apps/cnn-laser-machine-listener ./download.sh - 使用
CNN-LML-Preprocess-Data.ipynb预处理数据 - 使用
CNN-LML-Train.ipynb训练模型 - 使用
CNN-LML-TF-Model-Conversion.ipynb转换模型格式 - 实时预测
python ../../realtime_predictor.py
AlexNet变体尝试: 项目还尝试了基于AlexNet的模型,不仅效果更好,而且运行速度更快:
- 训练和结果可视化见相关笔记本
- 提供预转换的模型文件供快速尝试
技术要点总结
- 模型选择:项目提供了MobileNetV2和AlexNet两种架构选择,适应不同场景需求
- 音频处理:支持不同采样率和特征提取参数,可根据计算资源灵活调整
- 完整流程:从数据准备、模型训练到部署转换,覆盖了声音分类任务的完整生命周期
- 实践指导:通过具体应用示例,展示了如何将技术应用于实际问题
对于刚接触声音分类的开发者,建议先从FSDKaggle2018示例开始,理解整个工作流程后,再尝试其他应用场景。实验性应用则更适合有特定领域需求的研究人员参考。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355