DisEnvisioner 使用教程
2025-04-21 08:07:20作者:廉彬冶Miranda
1. 项目介绍
DisEnvisioner 是一个用于定制图像生成的开源项目。该项目通过分离和增强主题本质属性,无需繁琐的调整或依赖多个参考图像,就能生成各种出色的定制图像。DisEnvisioner 专注于解释主题关键属性,有效地识别和增强这些属性,同时过滤掉不相关的属性,从而在编辑性和身份一致性方面实现卓越的个性化质量。
2. 项目快速启动
在开始使用 DisEnvisioner 之前,请确保您的系统中已安装以下依赖:
- Ubuntu 20.04 LTS
- Python 3.9
- CUDA 12.3
- NVIDIA A800-SXM4-80GB
以下步骤将帮助您快速启动项目:
# 克隆仓库
git clone https://github.com/EnVision-Research/DisEnvisioner.git
cd DisEnvisioner
# 创建并激活虚拟环境
conda create -n disenvisioner python=3.9 -y
conda activate disenvisioner
# 安装依赖
pip install -r requirements.txt
# 安装 Git LFS 以下载预训练模型
git lfs install
# 克隆预训练模型
git clone https://huggingface.co/jingheya/disenvisioner_models
# 生成定制图像
CUDA_VISIBLE_DEVICES=0 python run_disenvisioner.py \
--pretrained_model_name_or_path "SG161222/Realistic_Vision_V4.0_noVAE" \
--pretrained_CLIP "openai/clip-vit-large-patch14" \
--half_precision \
--resolution 512 \
--seed 42 \
--num_samples 5 \
--scale_object 0.7 \
--scale_others 0.0 \
--disvisioner_path "disenvisioner_models/disenvisioner/disvisioner.pt" \
--envisioner_path "disenvisioner_models/disenvisioner/envisioner.pt" \
--infer_image "$IMAGE_PATH" \
--class_name "$CLASS_NAME" \
--infer_prompt "$PROMPT" \
--output_dir "$YOUR_OUTDIR"
请将 \$IMAGE_PATH, \$CLASS_NAME, \$PROMPT, 和 \$YOUR_OUTDIR 替换为您的输入图像路径、类名、编辑提示和输出目录。
3. 应用案例和最佳实践
以下是一些应用案例的示例结果:
- 输入图像:
assets/example_inputs/dog.jpg - 生成案例:
- dog/"最佳质量,高清晰度,一只正在奔跑的狗"/scale_object=0.7/seed=42
- dog/"最佳质量,高清晰度,一只站在喷泉前的狗"/scale_object=0.7/seed=42
- dog/"最佳质量,高清晰度,一只带有斑马纹的狗"/scale_object=0.7/seed=42
- dog/"最佳质量,高清晰度,一只穿着紫色巫师服装的狗"/scale_object=0.7/seed=42
4. 典型生态项目
DisEnvisioner 作为图像生成工具,可以与其他开源项目配合使用,例如:
- 用于图像处理的库,如 OpenCV
- 用于机器学习的框架,如 TensorFlow 或 PyTorch
- 用于数据可视化的工具,如 Matplotlib
通过整合这些项目,可以构建更加完整和强大的图像生成与编辑工作流。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896