GLM-4项目中的Tokenizer解码问题分析与解决方案
2025-06-04 05:08:11作者:毕习沙Eudora
问题背景
在自然语言处理领域,Tokenizer(分词器)是将文本转换为模型可理解的数字表示(token)的关键组件。GLM-4作为一款先进的大语言模型,其Tokenizer在实际使用中出现了一个值得关注的技术问题。
问题现象
当开发者尝试使用GLM-4的Tokenizer进行解码操作时,会遇到"TypeError: token should only be of type types or str"的错误提示。这个问题特别出现在调用decode方法处理单个token ID时,例如尝试解码token ID为198的情况。
根本原因分析
经过深入分析,发现问题的根源在于GLM-4的词表设计。GLM-4的词表中,键(key)是以bytes类型存储的,这与大多数Transformer模型的实现方式有所不同。当这些bytes类型的数据被传入transformers库的_decode函数时,在遍历过程中会被自动转换为int类型,从而导致类型不匹配的错误。
技术细节
- 词表存储差异:常规Tokenizer通常使用字符串作为词表的键,而GLM-4采用了bytes类型
- 类型转换问题:在解码流程中,bytes类型会被隐式转换为int,破坏了原有的类型系统
- 解码流程中断:类型不匹配导致整个解码过程无法完成
解决方案
针对这一问题,可以通过修改Tokenizer的convert_tokens_to_string方法来解决。以下是改进后的实现方案:
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
text = ""
temp = b""
for t in tokens:
if isinstance(t, int):
t = chr(t)
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors="replace")
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type int, bytes or str")
if temp:
text += temp.decode("utf-8", errors="replace")
return text
这个改进方案具有以下特点:
- 类型兼容性增强:明确处理int、bytes和str三种类型的token
- 容错机制:使用errors="replace"参数处理可能的解码错误
- 缓冲区管理:使用temp变量暂存bytes类型的token,提高处理效率
实际影响
该问题会影响所有需要单独解码token ID的场景,特别是在以下情况:
- 模型输出分析
- Token可视化
- 调试和错误排查
- 自定义文本处理流程
最佳实践建议
- 在使用GLM-4的Tokenizer时,建议检查是否使用了最新版本的代码
- 对于关键应用,建议实现自定义的类型检查和处理逻辑
- 在解码单个token时,可以先将token ID封装为列表再解码
总结
GLM-4的Tokenizer解码问题展示了在大型语言模型开发中类型系统设计的重要性。通过理解问题的本质并实施针对性的解决方案,开发者可以更有效地利用GLM-4的强大能力。这个问题也提醒我们,在使用不同模型时,需要特别注意其实现细节上的差异。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136